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The ability to output accurate predictive uncertainty estimates is vital to a reliable
classifier. Standard neural networks (NNs), while being powerful machine learning
models that can learn complex patterns from large datasets, do not possess such abil-
ity. Therefore, one cannot reliably detect when an NN makes a wrong prediction. This
shortcoming prevents applying NNs in safety-critical domains such as healthcare and
autonomous vehicles.

Bayesian neural networks (BNNs) have emerged as one of the promising solutions
combining the learning capacity of NNs with probabilistic representations of uncer-
tainty. By treating its weights as random variables, a BNN produces over its out-
puts a distribution from which uncertainty can be quantified. As a result, a BNN
can provide better predictive performance while being more robust against out-of-
distribution (OOD) samples than a respective deterministic NN.

Unfortunately, training large BNNs is challenging due to the inherent complexity of
these models. Therefore, BNNs trained by standard Bayesian inference methods typi-
cally produce lower classification accuracy than their deterministic counterparts, thus
hindering their practical applications despite their potential.

This thesis introduces implicit Bayesian neural networks (iBNNs), which are scalable
BNN models that can be applied to large architectures. This model considers weights
as deterministic parameters and augments the input nodes of each layer with latent
variables as an alternative method to induce predictive uncertainty. To train an iBNN,
we only need to infer the posterior distribution of these low-dimensional auxiliary
variables while learning a point estimate of the weights. Through comprehensive ex-
periments, we show that iBNNs provide competitive performance compared to other
existing scalable BNN approaches, and are more robust against OOD samples despite
having smaller numbers of parameters. Furthermore, with minimal overhead, we can
convert a pretrained deterministic NN to a respective iBNN with better generalisation
performance and predictive uncertainty. Thus, we can use iBNNs with pretrained
weights of state-of-the-art deep NNs as a computationally efficient post-processing
step to further improve performance of those models.
Keywords: Bayesian neural network, deep learning, neural network, uncer-

tainty quantification
Language: English
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Chapter 1

Introduction

Neural networks (NNs) are powerful machine learning (ML) models that can
learn complex patterns from large amounts of data [1–3]. They achieve state-
of-the-art performance in various tasks and domains, such as computer vision
[4], natural language translation [5], and speech recognition [6], leading to the
wide adoption of NNs in many commercial applications [7].

However, one must be careful when using deep NNs in production sys-
tems. Typically, in these systems, an NN will encounter diverse and unpre-
dictable input samples. These samples can be divided into two main groups:
in-distribution samples which are assumed to come from the same distribution
as the training samples, and out-of-distribution (OOD) samples which come from
a different distribution than the training data [8]. An NN should ideally be
more uncertain when making predictions on OOD samples than in-distribution
samples because the former have less in common with the training data than
the latter. However, deep NNs tend to produce overconfident predictions on
both in-distribution and OOD test samples [9–12]. It is, therefore, difficult to
determine when a model actually makes a meaningful and trustworthy pre-
diction. In other words, deep NNs lack the ability to output reliable predic-
tive uncertainty [13, 14]. This shortcoming hinders the usage of NNs in auto-
mated decision making systems in safety-critical domains, such as self-driving
vehicles [15] and healthcare [16]. In these systems, the ability to detect when
a model should not be trusted is of the utmost importance [17], as they use
the model’s predictions to make decisions affecting the health and safety of a
person. Therefore, these systems need ML models that can produce accurate
uncertainty estimates in order to make informed decisions, such as asking for
human intervention in cases of high uncertainty, thus preventing catastrophic
consequences from happening due to faulty predictions from the model.

While existing probabilistic ML models such as Gaussian Processes (GPs)
[18] can output reliable predictive uncertainty, they have limited applications
to high-dimensional unstructured data such as images, audio, and natural lan-
guages. This is because of the difficulty in defining meaningful kernels for these
types of data, as GPs rely on these kernels to measure the similarities between
testing and training samples. Even though the applications of GPs to image
classification are actively explored [19–21], their performance is still far below
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CHAPTER 1. INTRODUCTION 8

the current state-of-the-art NNs. Therefore, it is more promising to develop
NNs that can produce reliable uncertainty estimates.

Bayesian neural networks (BNNs) [22, 23] are one of the main types of NNs
that can output reliable predictive uncertainty. Because an NN is an overpa-
rameterised model, there are many weight configurations consistent with the
training data. Hence, there is uncertainty about which weight value provides
the most suitable hypothesis for the task. A BNN quantifies this uncertainty
by treating weights as random variables and attempting to learn their posterior
distribution given the training data. Theoretically, this allows a BNN to con-
sider all possible weight values and thus all possible hypotheses representable
by the model’s architecture when making predictions, instead of relying on any
single one of them as in the case of deterministic NNs. As a result, in a BNN, the
distribution over weights induces the distribution over outputs. Thus, weight
uncertainty captured by the posterior distribution propagates into uncertainty
in the model’s predictions [24], allowing for a more accurate representation of
uncertainty than a similar deterministic model [13, 25–28].

Unfortunately, the potential of BNNs is hindered by the challenges of infer-
ring their posterior densities, especially in the regime of large NNs and datasets
where NNs are most commonly applied. Modern deep NNs can contain more
than tens of millions of parameters, meaning that their posterior distributions
are very high-dimensional. Moreover, weights in an NN are arranged into a
layered structure with non-linear activation functions in between. The poste-
rior distribution of an NN, therefore, has a complicated multi-modal structure
[24]. The complexity of the posterior weight distribution is one of the main
reasons why standard approximate Bayesian inference methods such as mean-
field variational inference (VI) and Markov Chain Monte Carlo (MCMC) strug-
gle to train BNNs that can yield comparable performance to similar determin-
istic models in practice [29–31]. Furthermore, maintaining a distribution over
weights almost always incurs higher computational and memory costs than a
single point-estimate. For instance, if a BNN defines a Gaussian distribution
with its own mean and variance parameters for each weight, a common prac-
tice in mean-field VI, it will have twice the number of parameters of a similar
deterministic NN. For these reasons, ML practitioners might refrain from using
BNNs in their applications despite the promise of better uncertainty estimates.

1.1 Motivation

BNNs combine the powerful learning capacity of deep NNs with probabilistic
representations of uncertainty, which is important for applications of NNs to
safety-critical tasks. However, training a large BNN on a large dataset is a diffi-
cult task, which limits the adoption of BNNs to commercial applications despite
their potential. Therefore, in this thesis, we will focus on scalable BNN models
that maintain good predictive performance and low computational complexity
in the context of large NNs and datasets, while providing reliable uncertainty
estimates.
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1.2 Contributions

This thesis introduces implicit Bayesian neural networks (iBNNs), efficient BNNs
that can scale up to large NNs and datasets. We achieve efficiency and scal-
ability by introducing low-dimensional latent variables to a deterministic NN
to induce predictive uncertainty, and framing the training problem as inferring
the posterior distribution of these latent variables. Through comprehensive ex-
periments, we show that iBNNs provide competitive predictive performance
compared to other existing scalable BNN methods and are more robust against
OOD samples despite having smaller numbers of parameters. Furthermore,
we can easily convert a pretrained deterministic NN to a respective iBNN with
minimal overhead. Thus, we can apply iBNNs to pretrained state-of-the-art
deep NNs, which have been growing rapidly in size due to the abundance of
training data and computational resources, as a simple post-processing method
to further improve those models’ performance.

1.3 Outline

We first discuss the necessary background on BNNs in Chapter 2. Chapter 3
then thoroughly presents all the details about iBNNs. In Chapter 4, we perform
an in-depth analysis of the behaviour of these models. In Chapter 5, we rig-
orously evaluate the generalisation performance and predictive uncertainty of
iBNNs under different settings. Chapter 6 discusses the advantages and disad-
vantages of iBNNs, provides additional insights into BNNs and presents possi-
ble future research directions. Chapter 7 concludes this thesis.



Chapter 2

Bayesian neural networks

In this chapter, we will discuss Bayesian neural networks (BNNs). We first
provide a formal definition of BNNs in Section 2.1. We then present the training
methods for BNNs in Section 2.2. Section 2.3 discuss uncertainty quantification
in BNNs. Current challenges of BNNs will be outlined in Section 2.4. Finally,
we present some recent works in scalable BNNs in Section 2.5.

2.1 Formal definition

0.1
0.9

0.9
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0.4
0.4
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-0.1
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-0.40.70.80.9

1.1-1.2
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Figure 2.1: (a) In a standard NN, each weight has a fixed value. (b) In a BNN,
each weight is a random variable with a distribution.

In a standard deterministic NN with a fixed architectureM, the weight vec-
tor θ is considered to have one true value which can be found through training
on a dataset (Figure 2.1a). On the other hand, a Bayesian neural network (BNN)
[22, 23, 32] treats its weights θ as random variables with a prior probability
distribution (Figure 2.1b). Thus, we can view a BNN as a probabilistic model
with hidden variables θ. Training a BNN is equivalent to inferring the posterior
distribution of the weights θ using Bayes’ theorem:

p(θ|D,M) =
p(D|M,θ)p(θ|M)

p(D|M)
=

p(D|M,θ)p(θ|M)∫︁
θ p(D|M,θ)p(θ|M)dθ

(2.1)
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CHAPTER 2. BAYESIAN NEURAL NETWORKS 11

where D = {(xi,yi)}Ni=1 is the observed data andM denotes the architecture of
the NN.

The likelihood term p(D|M,θ) depends on the weights θ, the architecture
M and the learning problem. For example, in 1D homoscedastic regression
problems where the variance of the output is assumed to be constant with re-
spect to the input, the likelihood for each sample is typically a Gaussian distri-
bution with known variance σ2:

p(D|M,θ) =
N∏︂
i=1

N (yi|fMθ (xi), σ
2) (2.2)

where fMθ denotes the function represented by an NN with the architectureM
and weights θ. We can write the likelihood of the entire dataset as the product
of the likelihoods of individual samples because these samples are assumed to
be independent and identically distributed (i.i.d.). For classification problems,
the likelihood for each sample is a Categorical distribution:

p(D|M,θ) =

N∏︂
i=1

Categorical(yi|fMθ (xi)) (2.3)

The prior term p(θ|M) defines the distribution of weights that we believe to
be suitable to the task and the neural architectureM before observing any data.
Choosing a good prior is very important, since the architectureM and the prior
p(θ|M) together define the prior distribution over functions p(f). Specifically,
the architectureM defines the set of possible functions (hypotheses) while the
prior p(θ|M) controls the prior probability of each function. A popular option
for the prior is a diagonal multivariate Gaussian distribution with zero mean
p(θ|M) = N (0, σ2I) [22, 23, 30, 33–36], which corresponds to L2 regularisation
in deterministic NNs [22]. While this prior does express a reasonable belief,
it does not take into account the structureM of the NN. Therefore, using this
prior typically results in underperforming models in practice [31, 37, 38]. As
a result, additional measures are applied to improve performance of a BNN
with a Gaussian prior [31, 36]. We identify choosing priors as one of the main
challenges of BNNs and we discuss more on this subject in Section 2.4.

The evidence p(D|M) =
∫︁
p(D|M,θ)p(θ|M)dθ, or marginal likelihood, de-

fines the expected probability assigned to the dataset D by a random function
f ∼ p(f) where p(f) is the prior over functions induced by the neural architec-
tureM and the weight prior p(θ|M). In other words, the marginal likelihood
p(D|M) indicates the suitability of the architectureM and the prior p(θ|M) for
the dataset D. If we define the support of p(D|M) as the collection of datasets D
where p(D|M) > 0, then the size of this collection reflects the learning capacity
of the model [28]. For example, a linear model has a truncated support as it
can only learn linear functions, whereas a deep NN with a non-linear activa-
tion can learn most complex patterns. The inductive bias of a model can be de-
fined as how the probability mass of p(D|M) is distributed over the datasets in
its support [28]. For example, a convolutional NN will assign higher marginal
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likelihoods to image datasets, while a recurrent NN will favour sequential data.
Intuitively, we should prefer a complex model so that we can incorporate every
possible hypotheses that can explain the data to achieve good generalisation
performance for a learning problem. Furthermore, we should carefully choose
the network’s structure and prior so that we can assign higher prior probabili-
ties to hypotheses having reasonable inductive biases towards the data [28].

After we have obtained the posterior distribution, we can evaluate any func-
tion of interest g whose value depends on θ by marginalising over the posterior
distribution. In other words, we calculate the expected value of g with respect
to the weight posterior:

Ep(θ|D,M) [g] =

∫︂
θ
g(θ)p(θ|D,M)dθ (2.4)

For instance, to make a prediction on a new input x, we use the posterior predic-
tive distribution where the function g is the likelihood:

p(y|x,D,M) =

∫︂
θ
p(y|x,θ,M)p(θ|D,M)dθ (2.5)

which is equivalent to taking the average of all the possible explanations fMθ (x)
weighted by the posterior distribution.

Inferring the posterior distribution of a BNN is a difficult problem due to the
high dimensionality of this distribution and the non-linear nature of the model
[23]. We therefore rely on approximate Bayesian inference methods to infer the
posterior distribution p(θ|D,M), which we will discuss in the next section.

2.2 Inference methods

In this section, we will discuss two approximate Bayesian inference methods
for training BNNs. The first one is Variational Inference (VI), which attempts
to find a tractable proxy distribution which closely resembles the intractable
target distribution. The second method is Markov Chain Monte Carlo (MCMC)
which approximates a distribution using a set of representative samples. We
first discuss VI in Section 2.2.1. Section 2.2.2 will be about MCMC and we will
compare these two methods in Section 2.2.3

2.2.1 Variational inference

2.2.1.1 Definition

Variational inference (VI) [39] is an efficient Bayesian inference method that
transforms the problem of posterior inference into an optimisation problem.
The main idea behind VI is that we can approximate an intractable target distri-
bution by finding a simple and tractable one that most resembles the target dis-
tribution. Formally, let p denote the target distribution and qϕ denote a tractable
distribution parameterised by ϕ, both are distributions of a random variable z.
In VI terminology, qϕ is called the variational distribution and ϕ are the variational
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parameters. To approximate p, we need to find the value of ϕ that minimises the
Kullback-Leibler (KL) divergence between qϕ and p:

ϕ∗ = argmin
ϕ

KL [qϕ(z)||p(z)] := argmin
ϕ

∫︂
z
qϕ(z) (log qϕ(z)− log p(z)) dz (2.6)

In the case of BNNs whose true posterior is p(θ|D,M), if we denote qϕ(θ) as
the approximate posterior of the weights, then the KL divergence in the above
equation will become:

KL[qϕ(θ)||p(θ|D,M))] (2.7)

:=

∫︂
θ
qϕ(θ) (log qϕ(θ)− log p(θ|D,M)) dθ (2.8)

=

∫︂
θ
qϕ(θ) (log qϕ(θ)− log p̃(θ|D,M) + log p(D|M)) dθ (2.9)

=

∫︂
θ
qϕ(θ) (log qϕ(θ)− log p̃(θ|D,M)) dθ⏞ ⏟⏟ ⏞

−L(ϕ)

+ log p(D|M) (2.10)

where p̃(θ|D,M) is the unnormalised posterior, which is the numerator in the
right hand side of Equation (2.1):

p̃(θ|D,M) = p(D|θ,M)p(θ|M) (2.11)

Since the log evidence log p(D|M) is a constant with respect to the weights θ,
minimising the KL divergence in Equation (2.10) is equivalent to maximising
L(ϕ):

L(ϕ) :=
∫︂
θ
qϕ(θ) (log p̃(θ|D,M)− log qϕ(θ)) dθ (2.12)

=

∫︂
θ
qϕ(θ) (log p(D|θ,M) + log p(θ|M)− log qϕ(θ)) dθ (2.13)

=

∫︂
θ
qϕ(θ) log p(D|θ,M)dθ +

∫︂
θ
qϕ(θ) (log p(θ|M)− log qϕ(θ)) dθ

(2.14)

= Eqϕ(θ) [log p(D|θ,M)]−KL [qϕ(θ)||p(θ|M)] (2.15)

This function is called the evidence lower bound (ELBO), because it is the lower
bound of the log evidence p(D|M) since the KL term in the left hand side of
Equation (2.10) is non-negative:

log p(D|M) = L(ϕ) + KL [qϕ(θ)||p(θ|D,M)] ≥ L(ϕ) (2.16)

We can see that as the ELBO approaches the log evidence, the forward KL
divergence between the variational distribution and the target posterior ap-
proaches zero. In VI, we actually use the ELBO as the objective function
instead of KL [qϕ(θ)||p(θ|D,M)] to avoid calculating the intractable log evi-
dence log p(D|M). Equation (2.15) shows the ELBO is a sum of two terms:
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Figure 2.2: The optimal density q∗ returned by the forward and reverse KL.
Here we define the target density p as a mixture of two Gaussians, and the
approximate density q as a single Gaussian. The first two plots show the results
of the forward KL, which returns q∗ that captures one of the two modes of p
depending on how the mean of q is initialised. The third plot shows the result
of the reverse KL, which returns q∗ that attempts to capture all the support of p.

the expected log-likelihood Eqϕ(θ) [log p(D|θ,M)] which encourages the vari-
ational posterior qϕ(θ) to fit the training data well, and the negative KL term
−KL [qϕ(θ)||p(θ|M)] which acts as a regulariser because it prevents qϕ(θ) from
diverging from the prior p(θ|D,M). The ELBO is thus an intuitive objective:
it attempts to find a proxy posterior qϕ(θ) which can explain the data and is
grounded in the prior distribution.

2.2.1.2 The KL divergence

To understand the behaviour of VI, we need to examine the KL divergence
[40]. Given the target distribution p and the approximate distribution q, the
KL divergence between q and p has two properties making it suitable as an
objective function: it only admits non-negative value and it equals zero when
q and p are exactly the same. However, the KL divergence is not symmetric:
KL[q||p] ̸= KL[p||q]. We thus have two options to define our objective function
for a pair of distributions. We call KL[q||p] the forward KL and KL[p||q] the re-
verse KL between q and p. The difference between the forward and reverse KL
is that the former is the expected difference between the log density of q and
p with respect to q, while the latter is the expected difference between the log
density of p and q with respect to p. As a result, the distribution q∗ that min-
imises the forward KL is very different from the one that minimises the reverse
KL.

In the forward KL, the difference in log density is weighted by q; thus, for
all z where q(z) = 0, the difference between q(z) and p(z) does not contributes
to the overall function. The forward KL then focuses only on minimising this
difference when q(z) > 0. It is, therefore, easier for q to minimise the forward
KL if it focuses most of its mass in one region of high density of p and returns
low densities everywhere else, resulting in a distribution q∗ that underestimates
the support of p. This behaviour is known as zero-forcing [41]. The reverse
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KL, on the other hand, will stretch the distribution q to cover all the region
where p(z) > 0, as it weights the log density difference using p. Consequently,
there are regions where p(z) = 0 and q(z) > 0 ignored by the reverse KL. This
behaviour is called zero-avoiding [41] and it results in q∗ overestimating the
support of p. We visualise the difference between forward and reverse KL in
Figure 2.2.

In VI, the forward KL is used, which has the advantage of being simpler
to evaluate than the reverse KL since we calculate the expectation with respect
to the tractable variational distribution q instead of the intractable target dis-
tribution p. Expectation propagation, another approximate Bayesian inference
algorithm, minimises the reverse KL [42].

2.2.1.3 Application of VI to BNNs

To train BNNs using VI, we need to address two practical problems:

• We need to efficiently calculate the gradient of the loss function with re-
spect to the variational parameters.

• We need to modified the ELBO so that it is suitable for minibatch SGD
training typically used with NNs.

The authors of [43] introduced one typical application of VI to BNNs effectively
addressing these problems. We refer to this method as BNN-VI. We also note
that this work is built upon the works in [44] and [45]. BNN-VI solves the first
problem by using a factorised Gaussian distribution as the variational posterior:

qϕ(θ) =
P∏︂
i=1

N (θi|µi, σ
2
i ) (2.17)

where P is the number of weights in the network. This allows the usage of the
reparameterisation trick [46, 47] to efficiently calculate the gradient of the loss
function with respect to the variational parameters ϕ = {(µi, σ

2
i )}Pi=1. Specifi-

cally, in the forward pass, the sample of each weight θi is generated by:

θi = µi + σiϵ, ϵ ∼ N (0, 1) (2.18)

which allows a simple calculation of the gradient of the loss function L with
respect to the mean µi and standard deviation σi:

∂L
∂µi

=
∂L
∂θi

,
∂L
∂σi

=
∂L
∂θi

ϵ (2.19)

Since each weight θi in the BNN is represented by a Gaussian distribution with
a separate mean µi and variance σ2

i , the number of parameters in the BNN is
twice that of a similar deterministic NN. To solve the second problem, BNN-VI
uses a modified negative ELBO as the loss function:

Lπi(Di,θ) = −
1

|Di|
Eqϕ(θ) [log p(Di|θ,M)] + πiKL [qϕ(θ)||p(θ|M)] (2.20)
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where Di denotes the i-th subset of the full dataset D. The loss function above
differs from the ELBO in Equation (2.15) in that it calculates the expected log-
likelihood of a minibatch Di instead of the full dataset D, and it introduces a
weighting coefficient πi for the KL term. We need the coefficient πi to reduce the
influence of the KL term on the variational parameters, because the expected
log-likelihood is calculated over a different minibatch in each update while the
KL term stays the same. BNN-VI calculates the coefficient of the i-th iteration
in one epoch as πi = 2M−i

2M−1
where M is the number of minibatches. Within each

epoch, this scheme allows the weights to be more influenced by the KL term
initially and become more influenced by the data in the latter stage. Practically,
the loss function in Equation (2.20) is approximated as follows:

ˆ︁Lπi(Di,θ) =
1

|Di|

|Di|∑︂
j=1

(︂
− log p(Dj

i |θj ,M) + log qϕ(θ
j)− log p(θj |M)

)︂
(2.21)

where Dj
i is the j-th observation in Di and θj is the j-th sample drawn from the

variational posterior qϕ(θ). For the prior p(θ|M), the authors of [43] choose the
mixture of Gaussians: p(θ|M) = ρN (0, σ2

1I)+ (1−ρ)N (0, σ2
2I) where σ2

1 ≪ σ2
2 .

BNN-VI is efficient and can theoretically applied to large NNs. In practice,
however, it only provides comparable performance to deterministic NNs on
small NN architectures and simple datasets despite having twice the number
of parameters [43]. For more complex datasets and larger architectures, this
method returns underperforming models [13, 30, 48, 49]. This is because the
factorised Gaussian posterior causes high variance in the gradient estimates
preventing training from properly converging [30, 50–52]. Furthermore, the
factorised posterior does not capture the correlations among the weights which
might contribute to the bad performance of BNN-VI [22, 35, 53]. These chal-
lenges are addressed in depth in Section 2.4.

2.2.2 Markov Chain Monte Carlo

2.2.2.1 Definition

Markov Chain Monte Carlo (MCMC) is a family of algorithms that construct a
Markov chain whose stationary distribution is the target distribution p(θ). Us-
ing this chain, we can efficiently draw samples from the target distribution. Let
Θ = {θk}Kk=1 denote the set of K samples drawn from the constructed Markov
chain. Using these samples, we can approximate the expected value of any
function g(θ) with respect to p using the MCMC estimator:

ˆ︁gK =
1

K

K∑︂
k=1

g(θk) (2.22)

which converges to the true expectation as K →∞:

lim
K→∞

ˆ︁gK = Ep(θ) [g(θ)] =

∫︂
θ
g(θ)p(θ)dθ (2.23)
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Currently, Hamiltonian Monte Carlo (HMC) [54] is one of the best meth-
ods for sampling in high-dimensional spaces, because it leverages the gradient
information from the target density to increase efficiency. This makes HMC a
suitable algorithm for training BNNs, and the application of HMC to BNNs is
first investigated in [23]. We will present HMC in the next section.

2.2.2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [54] uses Hamiltonian mechanics to derive a
procedure that samples from a target distribution p(θ) using its gradient infor-
mation. Instead of directly samples from p(θ), HMC chooses to sample from the
canonical distribution π(θ,v), which is a joint distribution between the random
variables of interest θ and the auxiliary random variables v whose marginal
distribution π(θ) is exactly the target distribution p(θ):

π(θ,v) = π(v|θ)π(θ) = π(v|θ)p(θ) (2.24)

The auxiliary variables v are called the momentum variables and they are intro-
duced to aid in the definition of the dynamical system. Likewise, the variables
of interest θ are considered the position variables. Both θ and v have the same
number of dimensions D. To generate samples from the canonical distribu-
tion π(θ,v) using the Hamiltonian system, we first consider the Hamiltonian
function H(θ,v), the total energy of the system, as the negative log density of
π(θ,v):

H(θ, v) := − log π(v|θ)− log p(θ) (2.25)
= K(v) + U(θ) (2.26)

The first term K(v) = − log π(v|θ) is considered the kinetic energy and the sec-
ond term U(θ) = − log p(θ) is the potential energy of the system. While the po-
tential energy is the negative log density of the distribution of interest p(θ), the
kinetic energy usually takes the form of an unnormalised Gaussian distribution
with zero mean and covariance matrix M:

K(v) =
v⊤Mv

2
(2.27)

The new sample of (θ,v) is then obtained through the Hamiltonian equations,
which define the evolution of θ and v over the time t:

dθ

dt
=

∂H

∂v
=

∂K

∂v
= M−1v (2.28)

dv

dt
= −∂H

∂θ
= −∂U

∂θ
(2.29)

These equations conserve the total energy of the system, meaning that
H(θ,v) remains constant as θ and v are updated. This condition is needed so
that the canonical distribution π(θ,v) remains invariant under this dynamical
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system [55], which means the target distribution p(θ) is the stationary distribu-
tion of this Markov chain. In reality, these equations are approximated using
the leapfrog integrator, which is a numerical integrator suitable for this problem:

vt+0.5 = vt −
ϵ

2

∂U

∂θt
(2.30)

θt+1 = θt + ϵ
∂K

∂vt+0.5
(2.31)

vt+1 = vt −
ϵ

2

∂U

∂θt+1
(2.32)

where ϵ is the step size. To generate a new sample, starting from an initial
value (θ0,v0), the Hamiltonian equations are integrated for L steps using the
leapfrog method which produces a new sample (θL,vL). Here the step size ϵ
and number of steps L are two important hyperparameters that need tuning
to obtain good performance. However, this integrator introduces numerical er-
rors, which can be corrected through the Metropolis update with the acceptance
probability α:

α = min [1, exp (−H(θL,vL) +H(θ0,v0))] (2.33)

Overall, HMC contains two main steps: the first step proposes a new sam-
ple generated via a numerical integrator (the leapfrog method) to simulate the
Hamiltonian dynamics for L steps, and the second step accepts or rejects this
new sample to alleviate the numerical errors introduced by the integrator.

2.2.2.3 Application of MCMC to BNNs

To train a BNN, we need to infer its posterior distribution. Thus, we consider
the potential energy U(θ) in HMC as the unnormalised negative log posterior:

U(θ) = − log p̃(θ|D,M) = − log p(θ|M)− log p(D|θ,M) (2.34)

From here we can apply the HMC algorithm as presented in the previous sec-
tion to sample from the posterior [23]. However, this method only works for
small NNs and small datasets, since we need to calculate the likelihood of
the entire dataset which has high computational complexity in cases of large
datasets and large NNs [33, 34]. Therefore, we need a new sampling method
that can use the stochastic gradients of minibatch training. Specifically, this
method will need to use the potential energy calculated on a minibatch D̃ of
random samples from D:

Ũ(θ) = − log p(θ|M)− |D|
|D̃|

log p(D̃|θ,M) (2.35)

One such method was introduced in [34] and it is called Stochastic Gradient
Hamiltonian Monte Carlo (SG-HMC). The authors of [34] noticed that if one
naively uses the potential energy in Equation (2.35) in the Hamiltonian equa-
tions, the random noise in the stochastic gradient will increase the entropy of
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the canonical distribution π(θ,v), which means it is no longer invariant under
this dynamics. To solve this problem, SG-HMC first assumes that the gradient
noise δ(θ) follows a Gaussian distributionN (0,V(θ)), and employs a modified
Hamiltonian dynamics that can use the stochastic gradients to sample from the
target distribution:

dθ

dt
= M−1v (2.36)

dv

dt
= −∂Ũ

∂θ
−CM−1v + δ̂ δ̂ ∼ N

(︂
0, 2(C− ˆ︁B)

)︂
(2.37)

Here C is the user-defined friction term, ˆ︁B = 0.5ˆ︁V(θ) and ˆ︁V(θ) is the empirical
estimate of V(θ). The discretised version of the above equations with step size
ϵ is:

∆θ = ϵM−1v (2.38)

∆v = −ϵ∆θŨ(θ)− ϵCM−1v + ϵδ̂ δ̂ ∼ N
(︂
0, 2(C− ˆ︁B)

)︂
(2.39)

which is equivalent to the following system of equations:

∆θ = m (2.40)

∆m = −λ∆θŨ(θ)− αm+ γ γ ∼ N (0, 2(α− β̂)λ) (2.41)

where m = ϵM−1v, λ = ϵ2M−1, α = ϵM−1C and β̂ = ϵM−1 ˆ︁B. From these
equations, SG-HMC can be interpreted as sampling via adding stochastic noise
γ to the gradient of SGD with momentum 1 − α and learning rate λ [34]. An-
other stochastic gradient MCMC (SG-MCMC) method called Stochastic Gradient
Langevin Dynamics (SGLD) [33], which predates SG-HMC, can similarly be con-
sidered as sampling via injecting stochastic noise to the gradient of vanilla SGD
(without momentum).

In practice, performance of SG-HMC is very sensitive to hyperparameter
choices, specifically with respect to the values of ϵ, M, C and ˆ︁B [34, 56]. Re-
garding the step size ϵ, we can avoid the costly Metropolis update by annealing
ϵ to zero during sampling, since the rejection rate decreases along with the step
size [33]. However, ϵ should only be decreased to a small, non-zero value to
prevent high correlations between samples, which introduces small sampling
errors [33]. Additional guidelines on how to adaptively set the value for M, C
and ˆ︁B are provided in [56].

2.2.3 Comparison between VI and MCMC

The main drawback of VI is that it approximates the complex posterior with a
simpler proxy distribution and therefore can never returns the exact target den-
sity [39]. On the other hand, MCMC does not make any assumption about the
posterior and theoretically can recover the target density in the limit of infinite
samples [57]. Nevertheless, it is more natural to extend VI to use stochastic gra-
dients than MCMC [39, 43, 45]. As presented in the previous section, additional
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mechanisms are needed to make sure that the target distribution is theoreti-
cally invariant under SG-MCMC, and even then the asymptotic guarantee is
no longer hold true as there is a trade-off between sampling accuracy and effi-
ciency [33, 34]. Furthermore, VI is generally faster than MCMC [39]. As a result,
in Bayesian modelling, VI is more favourable when a large amount of data is
present, and MCMC is better if accurate posterior inference is required [39].

Regarding applications in BNNs, having a parametric variational posterior
allows VI to be applied in continual learning or transfer learning since the para-
metric posterior of the previous task can be used as the prior of the next task
[58]. On the other hand, SG-MCMC methods produce better predictive per-
formance than VI in conventional supervised learning tasks [59]. Therefore,
MCMC is more suitable for standard learning tasks where the entire dataset is
known beforehand, whereas VI is preferred if we need a parametric represen-
tation of the posterior for subsequent Bayesian updates [30, 58].

2.3 Uncertainty quantification

In this section, we will discuss predictive uncertainty quantification using BNNs.
We will focus on uncertainty quantification in supervised learning tasks. The
predictive uncertainty reflects how confident a model is in its prediction and
can be divided into two major types [60]:

• Aleatoric uncertainty is the uncertainty in the data [25, 60]. Some possible
reasons for this uncertainty includes: (i) the data is inherently stochastic;
(ii) there are measurement errors in the features due to imprecise instru-
ments; (iii) there are labelling errors in the target outputs; and (iv) there
are missing features in the inputs that are useful in explaining the data.
Since aleatoric uncertainty is inherent in the data, it cannot be reduced by
collecting more samples.

• Epistemic uncertainty is the uncertainty in the modelling process, which
comes from our limited knowledge about the underlying true model that
generates the data [25, 60]. This uncertainty is high if we choose a complex
hypothesis class such as NNs for our problem, since there are many mod-
els within the large hypothesis space that are equally good at explaining
the limited number of training samples. Therefore, epistemic uncertainty
can be reduced by collecting more training samples.

Together, these two types of uncertainty constitute the predictive uncertainty of
a model. Decomposing the predictive uncertainty into these two parts allows
us to identify the main source of uncertainty in the model’s prediction with
respect to an input sample, namely, if the uncertainty comes from noise in the
sample or from the model itself. Typically, epistemic uncertainty increases if the
input comes from a region of low density of training samples and thus is im-
portant for detecting OOD samples [25, 61], while aleatoric uncertainty reflects
the amount of noise in the observation.



CHAPTER 2. BAYESIAN NEURAL NETWORKS 21

−4 −2 0 2 4
(a)

−15

−10

−5

0

5

10

15
Predictive mean and variance

Training data

Predictive mean

Predictive std

−4 −2 0 2 4
(c)

0

2

4

6

8

10

V
ar

(y
|x

,D
,M

)

Total uncertainty

−4 −2 0 2 4
(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
ar

p(
θ
|D

,M
)(

E
[y
|x

,θ
,M

])

Epistemic uncertainty

−4 −2 0 2 4
(d)

0

2

4

6

8

E
p(

θ
|D

,M
)[

V
ar

(y
|x

,θ
,M

)]

Aleatoric uncertainty

Figure 2.3: A simple 1D regression problem to demonstrate the behaviour of
two types of uncertainty.

One approach to quantify and decompose the predictive entropy was intro-
duced in [62], which uses the entropy H(y|x,D,M) of the posterior predictive
distribution p(y|x,D,M) as the measurement of total uncertainty:

H(y|x,D,M) = −
∫︂
y
p(y|x,D,M) log p(y|x,D,M)dy (2.42)

The aleatoric uncertainty is defined as the expected entropy of the likelihood
with respect to the posterior distribution Eq(θ|D,M) [H(y|x,θ,M)] [62]:

H(y|x,θ,M) = −
∫︂
y
p(y|x,θ,M) log p(y|x,θ,M)dy (2.43)

Ep(θ|D,M) [H(y|x,θ,M)] =

∫︂
θ
H(y|x,θ,M)p(θ|D,M)dθ (2.44)

The epistemic uncertainty is then the difference between the total uncertainty
and the aleatoric uncertainty, which is the conditional mutual information
I(y,θ|x,D,M) between y and θ given the test input x, the architectureM, and
the training data D [62]:

I(y,θ|x,D,M) = H(y|x,D,M)− Ep(θ|D,M) [H(y|x,θ,M)] (2.45)

In practice, we approximate Equation (2.42) and Equation (2.44) using Monte
Carlo estimators. For a simple 1D regression task, we can also use the vari-
ance of the predictive posterior Var(y|x,D,M) as indicator of uncertainty and
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=

Figure 2.4: Illustration of one transformation in weight space conserving an
NN’s outputs. If we exchange the incoming and outgoing weights of the blue
and green hidden nodes (represented by arrows of similar colours), the net-
work’s outputs remain unchanged.

decompose it into aleatoric and epistemic uncertainty using the law of total
variance [62]:

Var(y|x,D,M) = Varp(θ|D,M) (E [y|x,θ,M])⏞ ⏟⏟ ⏞
Epistemic uncertainty

+Ep(θ|D,M) [Var(y|x,θ,M)]⏞ ⏟⏟ ⏞
Aleatoric uncertainty

(2.46)
To demonstrate the behaviour of epistemic and aleatoric uncertainty, we

replicate a toy regression problem in [62], where we train a small feedforward
NN with two hidden layers of size 20 and ReLU activation function on a 1D
toy regression data generated from the function: y = 7 sin(x) + 3| cos(x/2)|ϵ
where ϵ ∼ N (0, 1). We sample 750 values of x from an equally-weighted mix-
ture of Gaussians with three components with means (−4, 0, 4) and standard
deviations (0.4, 0.9, 0.4). Since the data is heteroscedastic, we train our network
to output both the mean and standard deviation for each input. We choose
HMC as our inference method because this is a small experiment. We plot the
predictive mean and variance of the trained BNN as well as the uncertainty de-
composition in Figure 2.3 which we calculate using Equation (2.46). From this
figure, we can see that the aleatoric uncertainty reflects the amount of noise in
an input sample, with the region of high aleatoric uncertainty in Figure 2.3d
coincides with the highly noisy input region from −2 to 2. The two peaks of
epistemic uncertainty Figure 2.3c correspond to the two regions of low density
of training samples. The total uncertainty is shown in in Figure 2.3b, which is
almost similar to the aleatoric uncertainty in Figure 2.3d since aleatoric uncer-
tainty is much larger than epistemic uncertainty in this problem. Nonetheless,
both types of uncertainty exhibit their typical behaviours as we have mentioned
previously.

2.4 Challenges in training BNNs

Training a BNN is difficult due to the following reasons:
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1. First, we have to perform probabilistic inference on a large number of
random variables in the form of the NN’s weights. The number of weights
can range from a few hundred thousands for small NNs to more than tens
of millions for large NNs.

2. Second, these random variables are arranged into a non-linear hierar-
chical structure defined by the NN architecture, which makes their pos-
terior distribution highly multi-modal and introduces weight symme-
tries. Weight symmetries are transformations that can be applied to the
weights of an NN without changing its outputs. For example, Figure 2.4
shows that if we exchange the incoming and outgoing weights of two
nodes within a single hidden layer, the outputs of the network remain
unchanged [63]. For a ReLU network, we can multiply the weights of a
layer with a non-zero scalar α and multiply the weights of the next layer
with 1/α and the network will still represent the same function [63].

Hence, performing inference on BNNs presents challenges for both VI and
MCMC in terms of computation cost and convergence. Furthermore, it is un-
clear how we can effectively define the prior for the weights of a BNN. Below,
we will discuss each of these challenges in their respective subsections.

2.4.1 Computation cost

When considering computation cost, we need to analyze both the time and
space complexity of the inference method.

Regarding time complexity, as we have presented in Section 2.2, both VI and
MCMC needs adapting to use stochastic gradients calculated on data batches
due to the high computational cost of computing the likelihood of the entire
dataset using an NN [33, 34, 43, 45]. While this extension is straightforward for
VI [43, 45], transforming MCMC to SG-MCMC introduces sampling errors thus
breaking the asymptotic guarantee of this algorithm [33, 34].

In terms of space complexity, the large number of random variables pre-
vents VI from using more expressive variational posteriors since they require a
large number of variational parameters. Hence, a typical variational posterior
is the factorised Gaussian distribution where each weight is represented by an
independent Gaussian distribution with a separate mean and variance, dou-
bling the number of parameters in the model. One major disadvantage is that
this factorised Gaussian does not learn the correlations between the weights.
Nevertheless, using a multivariate Gaussian posterior with a non-diagonal co-
variance matrix to capture the correlations between the weights is not an option
due to the prohibitive quadratic cost in the number of parameters. This is one
of the reasons why VI performs poorly in practice when being applied to BNNs
[22, 35, 53]. Regarding MCMC, it could become expensive to store a large num-
ber of MCMC samples of large NNs since the number of stored parameters
scales linearly with respect to the number of samples [64].
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2.4.2 Convergence

As we have discussed as the end of Section 2.2.1.3, VI with a Gaussian posterior
fails to converge properly when being applied to large NNs [30, 50–52]. This
problems originates from the fact that in high-dimensional spaces, the Gaus-
sian posterior concentrates most of its probability mass p(θ)dθ on a thin shell
far away from the mean [65, 66]. As we draw samples from the Gaussian poste-
rior to compute the Monte Carlo approximations for the loss function in Equa-
tion (2.21), these approximations will exhibit high variability, thus leading to
high variance in the gradient estimates preventing training from proper con-
vergence [30]. As a result, additional heuristics are needed in practice so that
BNNs trained by VI can achieve comparable predictive performance compared
to their deterministic counterparts [30, 31, 58].

While SG-MCMC does not suffer from severe convergence issues like VI,
it could stuck in a local mode due to the high modality of the posterior dis-
tribution, especially since we usually anneal the step size to a small value to
avoid the Metropolis update [33, 34]. A recent development in [36] proposed
using a cyclical learning rate schedule for SG-MCMC. This learning rate sched-
ule consists of repeated cycles where we first decay the learning rate to a small
value for mode exploration and then reset the learning rate to the initial large
value so that the chain can jump to another neighbourhood. While this scheme
does allow efficient traversal between multiple posterior modes, SG-MCMC
might explore modes representing equivalent functions due to weight symme-
tries, thereby reducing the effectiveness of Bayesian marginalisation and wast-
ing computational effort. Furthermore, even with a cyclical learning rate sched-
ule, weight samples in one chain still exhibit more functional similarity than
weight samples collected from independent runs with different random seeds
[67] (an approach called Deep ensembles presented in Section 2.5). Finally, as
previously noted in Section 2.2.2.3, SG-MCMC needs extensive hyperparameter
tuning to reach good predictive performance.

2.4.3 Prior specification

In classical Bayesian modelling, choosing the prior distribution is trivial be-
cause the models in these cases only contain small numbers of random variables
with clearly defined roles and connections. Furthermore, the learning tasks of
these models are often well-understood, thus allowing expert knowledge to be
used for prior elicitation [68]. On the other hand, choosing a prior distribu-
tion for the weights of an NN is a very challenging task, since the sheer num-
ber of parameters and the complexity of the learning task make it impossible
to understand the meaning of each individual weights to the task beforehand.
Therefore, a typical approach is to assumed a Gaussian prior N (0, σ2) for ev-
ery weight [22, 23, 30, 33–36]. However, such simplistic prior specification can
be detrimental to the model’s predictive performance because the prior com-
bined with the model’s architecture controls the prior hypothesis space and the
inductive bias of the model [28] as discussed in Section 2.1. This argument is
supported by a systematic study in [31], which showed that the current bad



CHAPTER 2. BAYESIAN NEURAL NETWORKS 25

prior specification is at least partly responsible for the poor predictive perfor-
mance of BNNs trained by SG-MCMC. To solve this issue, a current heuristic
in SG-MCMC is to replace the standard log posterior U(θ) = − log p(θ|D,M)
with the cold posterior UT (θ) = − log p(θ|D,M)/T where the temperature T is
set to a value smaller than 1. This posterior increases the influence of the likeli-
hood while reducing the effect of the prior [31]. An equivalent heuristic in VI is
to downweight the KL term in the ELBO [31]. Consequently, there is potential
to improve predictive performance of BNNs with a suitable prior distribution
[31, 37, 38].

2.5 Recent approaches

In this section, we outline some recent approaches in scalable BNNs and pre-
dictive uncertainty estimation, which will be used in the experiment section as
baselines. We will focus on BNN approaches that return parametric approxi-
mations of the posterior, as our method also belongs to this category.

2.5.1 Deep ensembles

Perhaps the simplest way to estimate predictive uncertainty is running stan-
dard SGD training multiple times with different random seeds and initialisa-
tions to produce multiple trained deep NNs and then combining the predic-
tions of these models via averaging. This method aptly named Deep ensembles
(DEs) was introduced in [14]. The only disadvantage of DEs is that their com-
putational and memory complexity scales linearly with respect to the ensemble
size. On the other hand, DEs produce the best generalisation performance com-
pared to other approaches [59], because each member in an ensemble represents
a distinct mode in the loss landscape. Hence, DEs serve as references for us to
see how close our method is to achieving the best possible results.

2.5.2 MC-Dropout

MC-Dropout [13] repurposes Dropout [69] as an approximate VI method. The
intuition is that we can view each random dropout mask as corresponding to a
sample from the variational posterior. Thus, this method consists of training a
model with dropout applied before every weight layer and keeping dropout ac-
tive during testing to draw multiple weight samples for predictive uncertainty
estimation.

Formally, MC-Dropout approximates the posterior by multiplying each in-
put node of each weight layer with a Bernoulli random variable. This is equiv-
alent to using a mixture of two Gaussians as the posterior of each individual
weight θ:

q(θ) = ρN (0, σ2) + (1− ρ)N (m,σ2) (2.47)

where ρ is the dropout rate and the variance σ2 is set to a very small value.
MC-Dropout is a very efficient method, does not introduce additional vari-

ational parameters, and it can return good predictive performance in practice
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when being applied to large NNs. In order to achieve good performance, how-
ever, we need to carefully select the dropout rate ρ, which controls both ac-
curacy and uncertainty of the model [13]. This hyperparameter tuning can be
expensive, especially since we might need to find the optimal dropout rate for
each layer. In practice, MC-Dropout returns worse generalisation performance
than Rank-1 BNNs and SWAG, two methods discussed below. Nonetheless,
MC-Dropout has been successfully applied to computer vision [25] and rein-
forcement learning [70, 71] as a reliable method for uncertainty estimation.

2.5.3 Rank-1 BNNs

Rank-1 BNNs [49] approximate the weight posterior of each layer using a mul-
tiplicative rank-1 matrix as follows:

W = U ◦
(︂
rs⊤
)︂
, r ∼ q(r), s ∼ q(s) (2.48)

where W and U are m × n weight matrices, r is an m-dimensional random
vector and s is an n-dimensional random vector. The posterior of W is induced
by the posteriors of r and s as well as the deterministic matrix U. VI is used to
train Rank-1 BNNs where the parameters are the weights U and the variational
parameters of q(r) and q(s).

The parameterisation of Rank-1 BNNs reduces the number of random vari-
ables within each layer from mn to m+n, allowing them to scale easily to large
NNs without introducing too many additional parameters. Taking advantage
of this reduction, the authors of [49] further placed a mixture of Gaussians pos-
terior on the random variables r and s to increase the expressiveness of the
model. Rank-1 BNNs return state-of-the-art performance on standard image
classification benchmarks while having small numbers of variational parame-
ters. Nonetheless, Rank-1 BNNs require replicating each minibatch K times
during training to train all K components of the mixture posterior in parallel,
thus increasing the training complexity. Their performance, moreover, is still
worse than DEs, because a Rank-1 BNN can only approximate a local mode in
the weight posterior.

2.5.4 SWAG

Stochastic Weight Averaging Gaussian (SWAG) [48] is an alternative approach
to VI relying on the SGD iterates to approximate a local posterior mode using a
multivariate Gaussian distribution. During training, starting from a pretrained
solution, SWAG will run SGD with a constant learning rate to collect T iterates
from the SGD trajectory, and use these iterates to approximate the mean and
covariance of the Gaussian posterior. Specifically, given a model with P param-
eters, after each collected iterates θi ∈ RP where i = 1, . . . , T , the following
update equations are applied:

θ ← nθ + θi

n+ 1
, θ2 ← nθ2 + θ2

i

n+ 1
, D(i) ← θi − θ (2.49)
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where θ and θ2 approximate the first and second moments and D is a P × T
matrix. A new weight sample θ̃ is then generated as follows:

Σdiag = diag(θ2 − θ
2
), Σlow−rank =

1

K − 1
ˆ︁Dˆ︁D⊤ (2.50)

θ̃ = θ +
Σ

1
2
diagz1√
2

+
ˆ︁Dz2√︁

2(K − 1)
, z1 ∼ N (0, IP ), z2 ∼ N (0, IK) (2.51)

which is equivalent to sampling from N
(︁
θ, 12(Σdiag +Σlow−rank)

)︁
. Here ˆ︁D is a

P × K matrix containing the last K columns of D, meaning that only the last
K SGD iterates are used to create a rank K approximation of the covariance
matrix. The last equation allows sampling from a non-diagonal Gaussian pos-
terior without explicitly storing the full covariance matrix, thus avoiding the
prohibitive quadratic cost.

SWAG cannot reach performance of DEs since it only captures one mode in
the posterior. However, SWAG has the same training cost as a similar deter-
ministic model, can be applied to large NNs, and it achieves great performance
in practice because it captures the correlations between the weights in the co-
variance matrix.

2.5.5 Radial BNNs

As we have mentioned in Section 2.4.2, samples from a high-dimensional Gaus-
sian posterior are concentrated in a region far away from the mean, which
causes high variance in the gradient estimates of the ELBO, preventing VI from
convergence. Radial BNNs [30] tackle this challenge by using the radial poste-
rior, a replacement for the factorised Gaussian posterior. Formally, the follow-
ing equation is used to draw weight samples θ̃ from the radial posterior with
mean µ and variance σ2:

θ̃
(ℓ)

:= µ(ℓ) + σ(ℓ) ◦ ϵ

||ϵ|| |r|, r ∼ N (0, 1), ϵ ∼ N (0, I) (2.52)

Here θ̃
(ℓ)
,µ(ℓ),σ(ℓ) and ϵ are vectors of size d where d is the number of pa-

rameters in the ℓ-layer of the network, and ◦ denotes the Hadamard product.
For each layer, the distance from the samples to the mean of this distribution
is then explicitly controlled by the random variable r, thus stabilising the gra-
dients and alleviating the converge issue of VI with large NNs. Experiments
in [30] showed that the radial posterior helps VI scale to large architectures
while producing competitive performance compared to deterministic models
and MC-Dropout. Therefore, we choose Radial BNNs in our baselines as strong
representatives of the standard VI method.

2.6 Summary

In this chapter, we reviewed the background on BNNs necessary for under-
standing the rest of this thesis. We first provided a formal definition of BNNs,
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which treat their weights as random variables. Training a BNN is then equiv-
alent to inferring the posterior distribution of its weights. We presented two
standard approximate Bayesian inference methods: VI and MCMC, and we
discussed how they can be applied to BNNs. Next, we explained two types
of uncertainty: aleatoric and epistemic uncertainty, and how we can quantify
each of them in a model’s prediction. We then outlined some major challenges
in training large BNNs. We finally presented some recent works on scalable
BNNs which are used as baseline methods in our experiments.



Chapter 3

Implicit Bayesian neural networks

As we have discussed in the previous chapter, training BNNs is difficult be-
cause we need to infer the posterior of a large number of random variables.
However, the eventual goal of treating weights as random variables is to induce
a distribution over the outputs of the model so that we can estimate predictive
uncertainty. Therefore, we propose to instead shift the stochasticity from the
weights of each layer to its input nodes to achieve the same effect. We call this
approach node parameterisation. Our motivation originates from a simple obser-
vation that the total number of nodes in an NN is much smaller than the total
number of weights. By considering nodes as random variables while treating
weights as deterministic parameters, we can substantially reduce the number
of random variables to be inferred. Thus, we propose implicit Bayesian neural
networks (iBNNs), BNN models that utilise node parameterisation to achieve
efficiency and scalability to large NN architectures and datasets.

We first provide a formal definition of iBNNs in Section 3.1. We then ex-
plain the reasoning behind their formulation in Section 3.2. Section 3.3 and
Section 3.4 present the training objective. Section 3.5 outlines the training pro-
cedure of iBNNs. Section 3.6 compares iBNNs to other methods. We conclude
this chapter in Section 3.7.

3.1 Formal definition

Let θ = {(U(ℓ),v(ℓ))}Lℓ=1 denote all deterministic parameters of an iBNN with
L layers, where U(ℓ) and v(ℓ) are the weights and biases of the ℓ-th layer. Let
Z = {(z(ℓ)U , z

(ℓ)
v )}Lℓ=1 denote all latent variables in the model, where the z

(ℓ)
U and

z
(ℓ)
v are the latent variables corresponding to the weights U(ℓ) and biases v(ℓ).

Let σ(ℓ) be the activation function of the ℓ-th layer. Then an iBNN with L layers
is defined as follows:

f (0)(x) := x, (3.1)

f (ℓ)(x) = σ(ℓ)
(︁
U(ℓ)

(︁
z
(ℓ)
U ◦ f (ℓ−1)(x)

)︁
+ v(ℓ)z

(ℓ)
v

)︁
, (3.2)

z
(ℓ)
U ∼ p(z

(ℓ)
U ), z

(ℓ)
v ∼ p(z

(ℓ)
v ), ∀ℓ = 1, .., L (3.3)

29
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where x is the input vector to the model and ◦ denotes the Hadamard product.
Compared to a conventional BNN, here the predictive distribution of the model
is induced by the latent variables Z, while the weights and biases θ are treated
as ordinary, non-stochastic parameters, which can either be optimised or initialised
from pretrained solutions. In the next section, we will explain our intuition for the
formulation of iBNNs.

3.2 Layer-wise input priors

In this section, we explain our motivation for using multiplicative latent vari-
ables by showing a connection between an iBNN and a conventional BNN. To
this end, we consider a single original layer in an iBNN whose input vector x̃
is assumed to be stochastic and comes from a distribution p(x̃|x) where x is the
unaltered input vector:

y = σ(Ux̃) (3.4)
x̃ ∼ p(x̃|x) (3.5)

Here U is the weight matrix of dimensions dout×din. We omit the biases because
we assume that the last element in the input vector x is an auxiliary feature with
a constant value of 1, which means the bias vector is the last column of U.

To find a suitable form of p(x̃|x), we compare this layer with a single-layer
of a standard BNN

y = σ(Wx) (3.6)
W ∼ p(W) (3.7)

where W is the stochastic weight matrix of the same dimensions as U. Simi-
lar to the iBNN’s layer, here we also absorb the stochastic bias vector into W.
Letting each pair of corresponding summands in the matrix multiplications of
both layers be equal gives us

Wi,jxj = Ui,j x̃j , (3.8)

where Wi,j and Ui,j are the entries at the i-th row and j-th column of matrices
W and U respectively, and xj is the j-th element of the input vector x. When
xj ̸= 0, we can represent the stochastic weight Wi,j via the deterministic weight
Ui,j and the stochastic input feature x̃j :

Wi,j = Ui,jzj (3.9)

zj =
x̃j
xj

. (3.10)

In the above equations, we define zj as the stochastic latent variable. Equa-
tion (3.9) shows that the product of the latent variable zj and the determinis-
tic weight Ui,j defines the distribution of the stochastic weight Wi,j . In other
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words, the distribution of the stochastic weight matrix W is:

W = U(diag z) (3.11)
z ∼ p(z), (3.12)

which is the result of perturbing the input vector x with the same multiplicative
latent vector z:

x̃ = x ◦ z (3.13)

So far, in our derivation, we consider the biases as the last column of the weight
matrix. If we explicitly separate out the bias vector and consider the latent

vector z =

[︃
zU
zv

]︃
, then we will get the formulation of iBNNs in the previous

section.
Equation (3.9) shows that iBNNs share the same noise distribution between

weights interacting with the same input feature for fully-connected layers.
For a convolution layer, each channel in its input tensor is a feature map

whose elements are highly-correlated. It is, therefore, sensible to define a latent
variable for each input channel. Specifically, given an iBNN’s convolution layer
with a deterministic weight tensor U of dimensions Cout ×Cin ×HF ×WF , the
latent vector z of this layer will be of dimension Cin. The input tensor x of this
layer is of dimensions Cin ×HI ×WI , and the corresponding perturbed input
x̃ will be a tensor of similar dimensions. Each element x̃j,m,n of x̃ is defined as:

x̃j,m,n = xj,m,nzj (3.14)

The output tensor y of this layer is obtained through performing convolution
between the weight tensor U and the perturbed input tensor x̃. This is equiv-
alent to performing convolution between a stochastic weight tensor W and
the input tensor x, where W has the same dimensions as U and each element
Wi,j,m,n of W is defined as:

Wi,j,m,n = Ui,j,m,nzj (3.15)

This equation shows that iBNNs share the same noise distribution between weights
that operate on the same input channel for convolution layers.

This multiplicative perturbation is intuitive, in that the variance of p(x̃) de-
pends on the magnitude of the corresponding feature x, meaning that an input
feature providing a stronger signal will also admit a wider range of sample val-
ues.

However, the implicit weight posterior induced by the latent variables is
not as expressive as a full weight posterior, leading to an underestimation of
predictive uncertainty. To increase the expressiveness of the model, we use a
mixture of Gaussians as the variational posterior of the latent variables, which
we will discuss more in the following sections.



CHAPTER 3. IMPLICIT BAYESIAN NEURAL NETWORKS 32

3.3 Variational inference

Given a dataset D, to train an iBNN with L layers, we infer the posterior
p(Z|D,θ) of the layer-wise latent input variables Z = {z(ℓ)}Lℓ=1, while treating
the weights and biases θ = {(U(ℓ),v(ℓ))}Lℓ=1 as deterministic parameters. Let
qϕ(Z) denote the variational posterior with the variational parameters ϕ. We
use the negative ELBO as our loss function to be minimised:

L(ϕ,θ) = −Eqϕ(Z) [log p (D|Z,θ)] + βKL [qϕ(Z)||p(Z)] (3.16)

Here, β controls the influence of the KL term in the ELBO. When training
iBNNs, we typically set β to 0 at the beginning and slowly increase it to 1 as
training progress.

Regarding the deterministic parameters θ, we either jointly optimise them
alongside the variational parameters ϕ or initialise them using the weights of a
pretrained deterministic model.

3.4 Variational ensemble posterior

Leveraging the reduction in the number of random variables, we consider using
a mixture distribution as the variational posterior for the latent variables Z, where
each component in the mixture is a factorised Gaussian distribution:

qϕ (Z) =
1

K

K∑︂
k=1

qϕ(k) (Z) (3.17)

qϕ(k) (Z) =
L∏︂

ℓ=1

qϕ(k,ℓ)

(︂
z(ℓ)
)︂

(3.18)

qϕ(k,ℓ)

(︂
z(ℓ)
)︂
= N

(︃
z(ℓ)

⃓⃓⃓⃓
µ(k,ℓ),diag

(︂
σ(k,ℓ)

)︂2)︃
(3.19)

where K is the number of mixture components, L is the number of layers, and
the variational parameters ϕ = {(µ(k,ℓ),σ(k,ℓ))}K,L

k=1,ℓ=1 are the means and stan-
dard deviations. We assume a diagonal Gaussian prior the latent variables Z:

p (Z) =
L∏︂

ℓ=1

p
(︂
z(ℓ)
)︂

(3.20)

p
(︂
z(ℓ)
)︂
= N

(︂
z(ℓ)
⃓⃓⃓
m, diag s2

)︂
. (3.21)

As this is a prior for multiplicative noise, a good default value for the prior
mean m is 1.
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We can approximate KL [qϕ(Z)||p(Z)] as follows:

KL [qϕ(Z)||p(Z)] = H (qϕ(Z), p(Z))−H(qϕ(Z)) (3.22)

H(qϕ(Z), p(Z)) = −
∫︂
Z
qϕ(Z) log p(Z)dZ = −

∫︂
Z

(︄
1

K

K∑︂
k=1

qϕ(k)(Z)

)︄
log p(Z)dZ

=
1

K

K∑︂
k=1

H
(︂
qϕ(k)(Z), p(Z)

)︂
(3.23)

H(qϕ(Z)) = −
∫︂
Z
qϕ(Z) log qϕ(Z)dZ ≈ −

1

M

M∑︂
m=1

log qϕ(Zm) (3.24)

where H(qϕ(Z), p(Z)) is the cross entropy between q and p, and H(qϕ(Z)) is
the entropy of q. The cross entropy term can be calculated analytically using
Equation (3.23). The entropy term can be approximated using a Monte Carlo
estimator as in Equation (3.24) where {(Zm)}Mm=1 are M samples drawn from
qϕ (Z).

Instead of using the asymptotic KL in Equation (3.22), we propose to calcu-
late the KL divergence between q̂ (Z) and p(Z) where

q̂ (Z) =
L∏︂

ℓ=1

q̂
(︂
z(ℓ)
)︂

(3.25)

q̂
(︂
z(ℓ)
)︂
= N

(︃
µ̂(ℓ),diag

(︂
σ̂(ℓ)

)︂2)︃
(3.26)

µ̂(ℓ) =
1

K

K∑︂
k=1

µ(k,ℓ),
(︂
σ̂(ℓ)

)︂2
=

1

K2

K∑︂
k=1

(︂
σ(k,ℓ)

)︂2
(3.27)

which is the distribution of ˆ︁Z = 1
K

∑︁K
k=1 Z

(k), where Z(k) is a sample from the
k-th component of the original qϕ(Z). This alternative KL term only requires
the component means µ(k,ℓ) to center around the prior mean m and the compo-
nent variances to be close to the prior variance s2 while placing no penalty on
how far each component resides from the prior mean. It is, therefore, a more
relaxed constraint compared to the one in Equation (3.22). This allows the pos-
terior components to freely explore the loss landscape surrounding the prior
mean. As we will demonstrate later in the next chapter, combining this relaxed
KL term with a large learning rate for the variational parameters leads to a sub-
stantial improvement in performance of iBNNs compared to the asymptotic KL
in Equation (3.22).

3.5 Training algorithm

In this section, we present the training procedure of iBNNs. We use SGD
to iteratively update both the deterministic weights θ and the variational pa-
rameters ϕ via backpropagation where the loss function in Equation (3.16) is
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Algorithm 1 Training procedure

Require: L: number of layers, B: batch size, N : number of epochs, K: num-
ber of components of the posterior, S: number of minibatch repetitions, λ0:
learning rate of deterministic parameters θ, λ1: learning rate of variational
parameters ϕ,N (1, ρ2) andN (η, τ2): Gaussian initialisers for the mean and
standard deviation of each component.

1: Initialise the deterministic parameters θ using a random initialiser or
weights from a pretrained model.

2: Initialise the means {µ(k,ℓ)}K,L
k=1,ℓ=1 usingN (1, ρ2) and initialise the standard

deviations {σ(k,ℓ)}K,L
k=1,ℓ=1 using N (η, τ2).

3: for i = 1 to N do
4: for all mini-batches B of size B from the dataset do
5: Repeat each sample in the minibatch S times to form a larger minibatch

B′ of size SB.
6: Assign the j-th sample in B′ to the k-th component where k = j

mod K.
7: Perform a forward pass using the samples and their assigned compo-

nents in the minibatch.
8: Calculate the loss L according to Equation (3.16).
9: Update the deterministic parameters θ and the variational parameters

ϕ using SGD:

θ ← θ − λ0∇θL
ϕ← ϕ− λ1∇ϕL

10: end for
11: end for

evaluated on a minibatch of training samples. However, since the roles of θ
and ϕ are different, each group of parameters is optimised using a different
learning rate. We denote λ0 as the learning rate for θ and λ1 as the learning rate
for ϕ.

Additionally, to encourage functional diversity among the posterior compo-
nents, they are trained on different permutations of the training set. For each
minibatch B = {(xi, yi)}Bi=1 containing B samples, we first replicate each train-
ing sample S times to form a larger minibatch of size SB: B′ = {(xi, yi)×S}Bi=1.
The j-th sample in B′ is then assigned to the k-th component using the modulo
operation:

k = j mod K (3.28)

where K is the number of components in the posterior. Under this procedure,
each component is trained on an overlapping slice containing SB/K samples
of a minibatch, thus encouraging the components to learn different representa-
tions of the data. Algorithm 1 presents the full training procedure.
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3.6 Connection to other methods

Standard BNNs We present the connection between iBNNs and conventional
BNNs in the context of fully-connected NNs, which is highlighted in Equa-
tion (3.11). From this equation, if we place a Gaussian posterior q(z) =
N (µ,diagσ2) and a Gaussian prior p(z) = N (1, diag s2) on the latent variables
z of a layer of an iBNN, then it will be equivalent to a layer in a standard BNN
whose posterior q(W) and prior p(W) of the stochastic weights W ∈ Rdout×din

are:

q(W) =

din∏︂
j=1

q(W:,j) =

din∏︂
j=1

N
(︂
U:,j ◦ µ, diag (U:,j ◦ σ)2

)︂
(3.29)

p(W) =

din∏︂
j=1

p(W:,j) =

din∏︂
j=1

N
(︂
U:,j , diag (U:,j ◦ s)2

)︂
(3.30)

where U ∈ Rdout×din is the deterministic weights of the iBNN, U:,j and W:,j

denote the j-th column of U and W. From the equations above, we can view
iBNNs as BNNs with shared variational parameters between weights belonging
to a column of a layer’s weight matrix.

MC-Dropout [13] iBNNs are more general than MC-Dropout because MC-
Dropout can be considered as an iBNN with Bernoulli latent node variables.

Multiplicative normalising flows for BNNs [72] Normalising flows [73–76]
are transformations that can be applied sequentially to transform a simple dis-
tribution to a more complex one. This method also utilises layer-wise mul-
tiplicative latent input variables like iBNNs. Unlike iBNNs, however, this
method uses normalising flows in the posterior of the latent node variables
while still maintaining a fully factorised Gaussian posterior over weights, as
its main goal is to improve the flexibility of the factorised Gaussian weight pos-
terior using the latent posterior.

Rank-1 BNNs [49] To see the similarity between Rank-1 BNNs and iBNNs,
we first note that from Equation (2.48), one layer of Rank-1 BNNs can be im-
plemented efficiently by multiplying it input nodes and output nodes with the
random vectors s and r respectively:

y = (U ◦ (rs⊤))x = (U (x ◦ s)) ◦ r (3.31)

Thus, a Rank-1 BNN can be viewed as a more general model than an iBNN
since it introduces latent variables to both the input and output nodes of each
layer. As a result, a Rank-1 BNN has roughly twice the number of variational
parameters compared to a similar iBNN. However, we will demonstrate later in
Section 5.1 that Rank-1 BNNs have comparable performance to iBNNs, show-
ing that it might not be necessary to use latent variables at both input and out-
put nodes.



CHAPTER 3. IMPLICIT BAYESIAN NEURAL NETWORKS 36

Probabilistic meta-representations of NNs [77] This method assigns each
node in an NN a latent vector z(ℓ)i ∈ RD where ℓ is the index of the layer and i

is the index of the input node of the ℓ-th layer. If we denote w
(ℓ)
i,j as the weight

connecting the i-th node in the ℓ-th layer to the j-th node in the (ℓ+ 1)-th layer,
then the distribution of w(ℓ)

i,j is:

w
(ℓ)
i,j ∼ p

(︂
w

(ℓ)
i,j

⃓⃓⃓
gξ(z

(ℓ)
i , z

(ℓ+1)
j , zs)

)︂
, (3.32)

z
(ℓ)
i ∼ p(z

(ℓ)
i ), z

(ℓ+1)
j ∼ p(z

(ℓ+1)
j ), zs ∼ p(zs) (3.33)

where zs ∈ RD is a global latent vector shared between all weights and gξ is
a function parameterised by ξ. The authors of [77] represented gξ using an
NN which they called the hyper-prior network. By comparing Equation (3.32)
with Equation (3.9), one can see that iBNNs are special cases of this method
where each weight w(ℓ)

i,j is represented by the product between its own separate

deterministic coefficient u(ℓ)i,j ∈ R and the latent input variable z
(ℓ)
i ∈ R.

3.7 Conclusion

In this chapter, we introduced iBNNs, which are efficient and scalable BNNs.
Section 3.1 first provided a formal definition of iBNNs, which treat weights as
deterministic parameters and induce stochasticity in the outputs via layer-wise
multiplicative latent input variables. Next, the motivation behind this formula-
tion of iBNNs was explained in Section 3.2. We then defined the training objec-
tive which is a simple negative ELBO in Section 3.3. We discussed the choice of
the variational posterior in Section 3.4. Taking advantage of the low dimension-
ality of the latent variables, we chose a Gaussian mixture posterior for the latent
variables and introduced an alternative KL constraint for the loss function. The
training procedure of iBNNs, designed to encourage diversity among posterior
components, was presented in Section 3.5. We concluded the chapter by briefly
comparing iBNNs to other methods in Section 3.6.



Chapter 4

Ablation studies

In this chapter, we study the properties of iBNNs. We first present the experi-
ment settings in Section 4.1, which will also be used for the main experiments
in the next chapter. Section 4.2 visualises the predictive uncertainty of iBNNs
on a 1D regression task. In Section 4.3, we empirically compare the two KL con-
straints presented in Section 3.4, which shows the advantage of the alternative
KL term that we proposed. Section 4.4 and Section 4.5 study the effect of the
variational learning rate λ1 and the number of data replications S, which are
two hyperparameters crucial to performance of iBNNs. Section 4.6 visualises
the regions in the loss landscapes captured by the posteriors of iBNNs, and
Section 4.7 concludes this chapter.

4.1 Experiment settings

In this section, we will present the experiment protocol used in the rest of this
thesis, namely the NN architectures, the datasets and the performance metrics.

Architectures We use VGG-16 [78] and WRN-28x10 [79] in our experiments.
These two architectures are depicted in Figure 4.1.

Dataset We use CIFAR dataset [80] in our experiments. This dataset contains
60000 colour images of size 32 × 32, where 50000 images are used for training
and 10000 images are used for testing. This dataset has two variants, CIFAR-10
and CIFAR-100, which differ from each other in the number of classes. CIFAR-
10 has 10 mutually exclusive classes, each containing 5000 training images and
1000 testing images. CIFAR-100 has 100 classes, each containing 500 training
images and 100 testing images. Based on these statistics, CIFAR is a balanced
dataset ideal for benchmarking.

Evaluation metrics We use prediction error rate, negative log-likelihood
(NLL), and expected calibration error (ECE). They are three important metrics
for measuring a model’s generalisation capability, and they are calculated on a
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Figure 4.1: The architectures of VGG-16 (a) and WRN-28x10 (b, c) with C target
classes. k × k, conv, m, /s denotes a convolution layer with kernel size k, m
output channels and stride s. All convolution layers of both networks use zero
padding of size one. For VGG-16, ReLU activation is used after every convo-
lution and fully connected layers. One block of WRN-28x10 is depicted in (c)
where n is the number of input channels, m is the number of output channels,
and s is the stride.
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test datasetD′ = {(xi, yi)}Ni=1. We calculate these metrics using the posterior pre-
dictive distribution p(y|x,D,M) defined in Equation (2.5). For all three metrics,
lower is better. We will explain each metric below:

• Prediction error rate is simply the percentage of test samples that are
wrongly predicted, which indicates the accuracy of the model’s predic-
tions. Let C be the set of class indices. Then a model’s prediction ŷi given
an input xi is:

ŷi = argmax
c∈C

p(y = c|xi,D,M) (4.1)

Thus the prediction error of a model on the test data D′ is:

Error =
1

N

N∑︂
i=1

1(ŷi ̸= yi) (4.2)

where 1(.) equals 1 if the condition in parentheses is correct and equals 0
otherwise.

• NLL is the negative log probability that a model assigns to the test dataset
D′. Assuming that D′ contains only i.i.d. samples, NLL is calculated by
summing the negative log probabilities of all the samples in D′:

NLL = −
N∑︂
i=1

log p(yi|xi,D,M) (4.3)

In this thesis, however, we calculate NLL by averaging instead of sum-
ming so that the final value does not depend on the size of the test dataset.

• ECE [81] measures how well-calibrated is the confidence p̂i of a model’s
prediction ŷi given an input xi. A well-calibrated prediction means that
its confidence reflects its true correctness likelihood [10]. This metric is
calculated by first dividing all the model’s predictions {(ŷi, p̂i)}Ni=1 on the
test set D′ into M equally-spaced bins on the [0, 1] interval based on the
confidences p̂i. Let Bm denote the set of indices of all predictions in the
m-th bin. Then ECE is calculated as follows:

ECE =
M∑︂

m=1

|Bm|
N

⃓⃓
acc(Bm)− conf(Bm)

⃓⃓
(4.4)

where acc(Bm) and conf(Bm) are:

acc(Bm) =
1

|Bm|
∑︂
i∈Bm

1(ŷi = yi), (4.5)

conf(Bm) =
1

|Bm|
∑︂
i∈Bm

p̂i (4.6)
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Experiment protocol In this chapter, we will mainly use VGG-16 with CIFAR-
100 to study the behaviour of iBNNs. We choose VGG-16 because it is smaller
than WRN-28x10, thus allowing us to perform multiple experiments under dif-
ferent hyperparameters in a shorter time, and CIFAR-100 is chosen because it is
challenging enough to show the differences in performance under various set-
tings. For testing, given an iBNN with K posterior components, we draw 32/K
samples from each component to approximate the posterior predictive distri-
bution. We use 5000 samples from the training data of CIFAR-100 as validation.

4.2 Visualising predictive uncertainty
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15 10 5 0 5 10 15
1

0

1

2

3 iBNN-4

15 10 5 0 5 10 15

iBNN-16

Training data Pred. mean. Pred. std.

Figure 4.2: Behaviour of iBNNs on a 1D regression toy dataset as the number of
posterior components K increases, compared to the behaviour of a BNN trained
by HMC. iBNN-K denotes an iBNN with K components.

We first observe the predictive uncertainty of iBNNs on a 1D homoscedastic
regression task. We use the toy dataset of [82] with 400 samples, and a feedfor-
ward network with 4 layers of sizes (200, 50, 50, 50) and ReLU activation. For
comparison, we train a standard BNN using HMC. We use 1000 samples for
BNN-HMC. The results are visualised in Figure 4.2. This figure shows that the
predictive uncertainty of iBNNs is well-behaved, since it increases as we move
away from the training samples. The uncertainty is higher for iBNNs with more
posterior components, with iBNN-16 produces comparable uncertainty to that
of BNN-HMC. We note that iBNN-16 has roughly the same number of param-
eters as a single deterministic NN, while BNN-HMC in this experiment has to
store 1000 weight samples.
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4.3 Comparing KL approximation

We compare between two variants of KL divergence discussed in Section 3.4:
the first one called KL exact is the asymptotic KL approximation defined in
Equation (3.22), and the second one called KL mean is the alternative KL be-
tween q̂ and the prior p where q̂ is defined in Equation (3.26). For this experi-
ment, we use VGG-16 and CIFAR-100. We set K = 8 and S = 4 where K is the
number of posterior components and S is the number of data replications. The
training data contains 45000/50000 samples from the original training set, and
the validation set contains the remaining 5000 samples. The results are shown
in Figure 4.3. Overall, using the KL mean allows the model to reach much
better performance than KL exact across all three metrics and under different
values of the variational learning rate λ1. These results support our argument
in Section 3.4 that allowing the components more freedom to move around the
parameter space improves performance of iBNNs. Thus, we will use KL mean
in all of our subsequent experiments.
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Figure 4.3: Comparison between two KL variants. For KL exact, we
run experiments for all values of the prior standard deviation s in
{0.3, 0.6, 1.2, 2.4, 4.8, 9.6}. For KL mean, we fix the value of s at 0.3. We
track the model’s performance under both KL terms for all values of λ1 in
{0.05, 0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40}, where λ1 is the learning rate of the
variational parameters ϕ.
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4.4 Effects of the variational learning rate λ1
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Figure 4.4: Performance of iBNNs with different number of components K un-
der VGG-16/CIFAR-100. We use a batch size of 128 and S = 1 in this experi-
ment.

We hypothesise that using a larger learning rate λ1 for the variational pa-
rameters than the learning rate λ0 for the deterministic parameters can be ben-
eficial to the model’s performance. Since our KL constraint allows the poste-
rior components to be far away from the mean, a large λ1 improves diversity
between components by encouraging them to explore a wide region in the pa-
rameter space around the prior mean. Furthermore, due to the training pro-
cedure in Section 3.5, each component is trained on a minibatch slice of size
SB/K ≤ B, as we typically use S ≤ K. The update step of each compo-
nent after one iteration, therefore, is less accurate than that of the deterministic
weights, whose gradient is calculated on the entire minibatch. Setting λ1 to a
large value relatively to the value of λ0 thus allows these components to quickly
adapt to the changes of the deterministic weights.

We empirically confirm our hypothesis by training iBNNs with VGG-16 on
CIFAR-100. Similar to the previous section, we use 45000/50000 samples from
the original training set as training data, and we plot the results on the valida-
tion set containing the remaining 5000 samples in Figure 4.4 as λ1 increases. We
plot λ1/K on the x-axis since we scale λ1 based on the number of components
K. Figure 4.4 shows that both NLL and ECE decrease as λ1 increases, and we
need to use larger λ1 for larger K. The increase in validation error is because
we use a batch size of 128 and S = 1 in this experiment, causing the size of
the minibatch slice for each component to quickly decrease as K increases, thus
preventing the variational parameters to converge to high-performing values.
This problem can be alleviated by increasing the number of data repetitions S,
as shown in the next section.
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Figure 4.5: Performance of iBNNs with K = 8 components under VGG-
16/CIFAR-100 with different number of data repetitions S.

4.5 Effects of the number of data replications S

We study the importance of the number of data replications S to performance of
iBNNs. We use a similar setting as in the previous section with K = 8 compo-
nents. Figure 4.5 shows the results on the validation set under different values
of S as λ1 increases. Larger S permits the usage of larger λ1 without increasing
classification error since each component can be trained on a larger minibatch
slice. From the input augmentation perspective, using S > 1 means that S out
of K components are chosen during the forward pass, producing S different
perturbed versions of the input of each layer. The deterministic weights of each
layer, therefore, are trained to accommodate different input perturbations, thus
improving robustness and generalisation. Nonetheless, we only want to set S
to a small and appropriate value, as the training complexity scales linearly with
respect to S. Figure 4.5 suggests that S = 4 is a good value.

4.6 Visualising the loss landscape

In this section, we visualise the regions on the loss landscapes captured by
the posteriors of iBNNs. We first observe that, from Equation (3.9) and Equa-
tion (3.15), we can represent each component in the posterior of an iBNN with
its mean in the weight space θ(k):

θ(k) =
[︁
vec(W(k,1)) vec(W(k,2)) · · · vec(W(k,L))

]︁⊤ (4.7)

where k is the index of the component, L is the number of layers, vec denotes
the operation that reshapes a matrix or tensor into a 1D row vector, and W(k,ℓ)

is defined as follows:

• If the ℓ-th layer is a fully-connected layer, then based on Equation (3.9),
we have:

W
(k,ℓ)
i,j = U

(ℓ)
i,j µ

(k,ℓ)
j (4.8)
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Figure 4.6: The loss regions captured by iBNNs under different pairs of
architecture-dataset in the first and second components (left) and in the third
and fourth components (right).
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• If the ℓ-th layer is a convolution layer, then based on Equation (3.15), we
have:

W
(k,ℓ)
i,j,m,n = U

(ℓ)
i,j,m,nµ

(k,ℓ)
j (4.9)

where U(ℓ) contains the deterministic weights, and µ(k,ℓ) is the mean vector of
the k-th component in the latent posterior of the ℓ-th layer. For fully-connected
layers, U(ℓ) and W(k,ℓ) are 2D weight matrices, and for convolution layers, U(ℓ)

and W(k,ℓ) are 4D weight tensors.
From K weight values {θ(k)}Kk=1, we use principal component analysis (PCA)

to get the first four principle components {vi}4i=1 of the weight space. We then
visualise the loss landscape in the first two components and in the next two
components for each pair of architecture-dataset in Figure 4.6.

To generate each contour plot in Figure 4.6, we first define a 2D grid cen-
tering around 0. Then for each coordinate (x, y) in the 2D grid, we calculate
the weight value θ(x, y) and use that weight value to calculate the NLL of the
training data. Each weight value θ(x, y) is defined as:

θ(x, y) := θ + x
vx

||vx||2
+ y

vy

||vy||2
(4.10)

θ :=
1

K

K∑︂
k=1

θ(k) (4.11)

where vx and vy are the principle components corresponding to the x-axis and
y-axis respectively. Figure 4.6 shows that the components of an iBNN popu-
late a local mode in the loss landscape, thus putting iBNNs into the category
of methods providing single-mode approximations such as SWAG and Radial
BNNs.

4.7 Conclusion

This section provided an in-depth study of the behaviours and characteristics
of iBNNs. We first visualised the predictive uncertainty of iBNNs in a 1D toy re-
gression problem in Section 4.2, showing that iBNNs with a sufficient number
of posterior components produce well-behaved uncertainty estimates compa-
rable to those of standard BNNs. Through the experiment in Section 4.3, we
found that using a relaxed KL term allows iBNNs to reach better generalisa-
tion performance. Section 4.4 showed that it is importance to set the variational
learning rate λ1 to a large value. Section 4.5 showed that replicating each mini-
batch S times during training is required to maintain good performance and
suggested that S = 4 is a good value. Finally, Section 4.6 utilised PCA to show
that an iBNN approximates a local mode in the loss landscape.



Chapter 5

Experiments

In this chapter, we evaluate iBNNs in two aspects: the first one is their gener-
alisation performance on clean test data, and the second one is their robustness
against OOD input samples. We use standard benchmark datasets and modern
deep NN architectures for image classification in our experiments.

To achieve our first goal, in Section 5.1, we compare iBNNs to deterministic
NNs, DEs, and other scalable BNN approaches presented in Section 2.5 using
clean testing samples, which are i.i.d. to the training samples, to observe how
well iBNNs perform under ideal test settings.

For our second goal, in Section 5.2.1, we artificially introduce noise to the
clean test data and visualise the changes in predictive uncertainty of iBNNs as
the noise intensity increases. We then test iBNNs under two different scenarios
of distributional shift. The first one is covariate shift [8], where the target labels
of the test samples are similar to the training data but the inputs come from a
different distribution. To simulate this scenario, in Section 5.2.2, we use the test
dataset of common image corruptions introduced in [83]. The second scenario
is completely OOD, where both the inputs and the ground truth labels come from
an entirely different dataset. We evaluate the capability of iBNNs to detect OOD
samples in Section 5.2.3 using the testing procedure in [84].

We demonstrate in Section 5.3 that an iBNN can reuse weights from a pre-
trained deterministic model and achieve better predictive performance for a
few training epochs.

Section 5.4 concludes this chapter.

5.1 Experiments on CIFAR

5.1.1 Experimental setup

Dataset We use CIFAR dataset presented in Section 4.1.

Evaluation metrics We calculate prediction error rate, NLL, and ECE of each
method for comparison. We have discussed these metrics in Section 4.1.

46
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Baselines Our baselines include Radial BNNs [30], MC-Dropout [13], SWAG
[48], DEs [14] and Rank-1 BNNs [49], which we have discussed in Section 2.5.
We also include the results of deterministic models in our comparison.

Evaluation protocol We run each experiment 5 times using different random
seeds and report the mean and standard deviation of each metric (except for
DEs, which we only report the mean for each metric). To ensure a fair compar-
ison between BNN methods, we give each of them an equal sampling budget
during testing. We draw 32 weight samples during testing and average the pre-
dictions from these samples for Radial BNNs, SWAG and MC-Dropout; while
for iBNNs with K posterior components, we draw 32/K samples from each
component for averaging. For a comprehensive evaluation, we report the re-
sults for iBNNs with 1, 2, 4, 8, 16 and 32 component(s) in the posterior.

Hyperparameters We include all information about the hyperparameters and
implementations of each method in the appendix.

5.1.2 Results

Figure 5.1 shows the results of iBNNs and baseline methods on CIFAR dataset.
Overall, iBNNs greatly benefit from having multiple components in their pos-
teriors. We see improvement across all metrics and under different settings as
the number of components increases. We do not consider using K > 32, as our
initial experiments show diminishing returns in performance gain. This is in
accordance with our observation in Section 4.6 that the components of an iBNN
populate around a local minimum of the loss landscape which puts an upper
bound on the diversity among the predictions from these components. In other
words, as we add more components to the posterior, the likelihood of a new
component being similar to one of the already existing components increases,
leading to diminishing improvements. This phenomenon is also observed for
SWAG, which uses a multivariate Gaussian posterior to approximate a local
mode, as its performance does not improve when we use more than 30 weight
samples during inference.

For CIFAR-10, iBNNs are consistently better than SWAG and provide com-
petitive performance compared to DEs. For CIFAR-100, iBNNs are better than
SWAG in terms of accuracy but worse than SWAG in terms of NLL. iBNNs
achieve better ECE than SWAG in most cases, with the only exception being
VGG-16/CIFAR-100. In all cases, DEs achieve better accuracy and NLL while
being less calibrated than iBNNs. While Radial BNNs solve the convergence
issue of VI, they still return subpar performance, as their fully factorised pos-
terior does not capture the correlations between weights. MC-Dropout does
not perform as well as iBNNs and SWAG because it combines predictions from
smaller models sharing the same computational graph.

Despite having competitive performance compared to SWAG and DEs,
iBNNs have the fewest parameters. Each component in the posterior of
an iBNN only requires a relatively small number of variational parameters,
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Figure 5.1: Results for iBNNs and baseline methods on CIFAR dataset. Each
setting is run 5 times with different random seeds (except for DEs). Lower is
better in all quantities. iBNN-K denotes models with K posterior components.
We use 8 models for DEs.

whereas a DE with 8 models contains 8 times the number of parameters of a
single deterministic model, and a SWAG model needs to store 20 copy of de-
terministic weights to approximate the multivariate Gaussian posterior. For
example, on WRN-28x10 with a total of 9475 input nodes, each component of
an iBNN only adds 2 × 9475 = 18950 variational parameters to the model. We
visualise the number of parameters of all methods in Figure 5.2, showing that
iBNNs have significantly lower memory footprint during inference than other
methods, except for MC-Dropout. This advantage allows iBNNs to efficiently
scale up to large NNs.

Comparison to Rank-1 BNNs As discussed in Section 3.6, Rank-1 BNNs are
quite similar to iBNNs. However, the KL constraint in the loss function of Rank-
1 BNNs is different from that of iBNNs. For a Rank-1 BNN with K posterior
components, let Z = {(s(ℓ), r(ℓ))}Lℓ=1 denote all the latent variables in the model,
where s(ℓ) and r(ℓ) are the latent input vector and the latent output vector of the
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ℓ-th layer, respectively. The KL divergence is then defined as:

KL [q(Z)||p(Z)] :=
K∑︂
k=1

KL [qk(Z)||p(Z)]

=
K∑︂
k=1

L∑︂
ℓ=1

KL
[︂
qk(s

(ℓ))||p(s(ℓ))
]︂
+

K∑︂
k=1

L∑︂
ℓ=1

KL
[︂
qk(r

(ℓ))||p(r(ℓ))
]︂

(5.1)

where qk is the k-th component of the posterior. As this constraint controls
the distance between each component mean and the prior mean, the posterior
components are not free to explore regions far away from the prior in the loss
landscape. We thus hypothesise that it could be too restrictive and could reduce
the diversity among the predictions returned by different components, thereby
reducing the model’s performance. To test our hypothesis, we train Rank-1
BNNs under different settings and compare their test results to iBNNs, which
employ a less restrictive KL constraint in the loss function. Figure 5.3 shows
that while Rank-1 BNNs are slightly more calibrated, iBNNs are able to achieve
better accuracy and NLL, thus providing empirical evidence supporting our
hypothesis. This also suggests that we might not need to include the latent
variables for both input and output nodes since the latent input variables are
enough to achieve good performance.

5.2 Experiments in OOD settings

5.2.1 Visualising predictive uncertainty

In this section, we artificially introduce noise to the test samples of CIFAR to
observe the changes in the aleatoric and epistemic uncertainty of the predictions
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Figure 5.3: Results for Rank-1-K (▽ marks) with K components as the varia-
tional learning rate λ1 increases. For comparison, we plot the results for iBNN-
K (◦ marks) in the value of λ1 corresponding to its best performance. We use
VGG-16/CIFAR-100 for this experiment. Each result is averaged over 5 runs.

from an iBNN as the noise intensity increases. We consider two types of noise:

Gaussian noise: x′ := (1− p)x+ pϵ ϵ ∼ N (0, 1) (5.2)

Salt and pepper noise: x′ :=

⎧⎪⎨⎪⎩
1, if ϵ > 1− p/2

0, if ϵ < p/2

x, otherwise

ϵ ∼ U(0, 1) (5.3)

where p ∈ [0, 1] controls the noise intensity, x′ is an element in the corrupted
sample x′ with x as the corresponding element in the original sample x, and
U(0, 1) denotes the uniform distribution between 0 and 1.

We use the equations in Section 2.3 to calculate the epistemic and aleatoric
uncertainty for each test sample, and visualise the mean and standard deviation
of both types of uncertainty as a function of noise intensity p in Figure 5.4a and
Figure 5.4b. These figures show that an iBNN increases its uncertainty as inputs
converge towards noise, which is an ideal behaviour. We also observe that epis-
temic uncertainty is higher for models with more posterior components, which
is intuitive since adding more components will increase diversity among the
predictions from different components. Overall, we can conclude that iBNNs
produce reliable predictive uncertainty.

5.2.2 Experiments on CIFAR-C

In this section, we examine performance of iBNNs under covariate shift using
the CIFAR-C dataset introduced in [83]. This dataset contains the test images
from the original CIFAR dataset, but these images have been corrupted using 19
common corruption types with 5 levels of intensity. Since we still have the true
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Figure 5.4: The progression of aleatoric and epistemic uncertainty represented
by the average entropy over all test samples as the noise intensity increases.

target labels in this scenario, we use prediction error, NLL and ECE as eval-
uation metrics to measure how well iBNNs generalise to corrupted test sam-
ples. For baselines, we use SWAG, MC-Dropout and DEs. For each method,
we report the result of each intensity level averaged over all corruption types
in Figure 5.5 and Figure 5.6.

Both Figure 5.5 and Figure 5.6 show that all methods perform worse as the
corruption intensity increases. Figure 5.5 shows that with WRN-28x10, iBNNs
return the lowest prediction errors in both CIFAR-10-C and CIFAR-100-C; while
for NLL, iBNNs are better than both SWAG and DEs in CIFAR-10-C, and are
only worse than DEs in CIFAR-100-C. However, both SWAG and DEs either
perform similar to or better than iBNNs in terms of ECE. Figure 5.6 shows that
with VGG-16, iBNNs return the second best results in terms of prediction error
and NLL, while the best results belong to DEs. Regarding ECE, iBNNs provide
the best results in CIFAR-10-C and are only worse than SWAG in CIFAR-100-
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Figure 5.5: Results for iBNN-32, MC-Dropout, SWAG, and DEs with WRN-
28x10/CIFAR-C. Each experiment is run 5 times.
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Figure 5.7: Results for iBNN-32, SWAG and MC-Dropout models trained on
CIFAR in the OOD detection task with SVHN as the OOD dataset, averaged over
5 runs.

C. Overall, these results show that iBNNs generalise well to perturbed input
samples.

5.2.3 OOD detection

In this section, we further evaluate the predictive uncertainty of iBNNs using
the OOD detection task. Following the testing procedure in [84], we consider
this task as a binary classification problem where we assign the positive label to
all samples in the original test dataset and the negative label to all test samples
from a completely different dataset. The confident score of a prediction is the
maximum probability in the posterior predictive distribution. Since we train
our model on CIFAR which is a dataset of 32× 32 colour images, we use the test
set of SVHN [85] as our OOD samples, because these two datasets contain inputs
of the same dimensions while having completely different sets of target labels.
This is an imbalanced binary classification task because CIFAR contains 10000
test images whereas SVHN contains 26032 test images. Therefore, we choose
Area Under the Precision-Recall curve (AUPR) [86] as the evaluation metric
due to it being a threshold-independent metric in binary classification suitable
for imbalanced test data. A higher AUPR indicates a better classifier, as the
Precision-Recall curve plots precision against recall as the confidence threshold
increases from 0 to 1. Figure 5.7 shows that iBNN-32 is better than both SWAG
and MC-Dropout in most scenarios and only performs worse than SWAG in the
WRN-28x10/CIFAR-10 setting.
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Table 5.1: Results for ResNet-50 on the validation set of IMAGENET using pre-
trained parameters from torchvision.models. Each experiment is run once.

Error (%) (↓) NLL (↓) ECE (↓)
Deterministic 23.99 0.9629 0.0378
iBNN-4 23.18 0.9265 0.0300
iBNN-8 23.04 0.9182 0.0249
iBNN-16 23.05 0.9111 0.0191
iBNN-32 22.91 0.9048 0.0163

5.3 Improving pretrained IMAGENET models

In this section, we demonstrate the ability of iBNNs to use pretrained determin-
istic weights to save training time and improve performance of pretrained mod-
els. Despite saving memory during inference, iBNNs require a longer training
time due to the need of replicating each minibatch S times during training in
order to achieve good performance, as we have discussed in Chapter 4. For
example, on one Tesla-V100 GPU, training a WRN-28x10 model on CIFAR us-
ing SWAG takes about 9 hours, which is similar to the training time of a single
deterministic model, while training an iBNN with S = 4 will take around 34
hours. To reduce the training time of iBNNs, especially in the context of very
large models and datasets, we propose instead to initialise the deterministic
weights θ of an iBNN with weights from a corresponding pretrained determin-
istic model and only train the variational parameters ϕ for a few more epochs.
This subsequent training procedure thus takes much less time than fully train-
ing an iBNN from the beginning. In this way, an iBNN improves performance
of the pretrained model by letting the components in the ensemble posterior
explore the local neighbourhood of the deterministic weights.

For the experiments in this section, we use the ResNet-50 [4] architecture
and IMAGENET dataset [87], which is a large scale dataset for image classifi-
cation. This dataset contains 1200000 training images, 50000 validation images
and 100000 testing images. We only report the results on the validation set be-
cause the labels from the testing set are not published. The images in the dataset
are of various sizes and are divided into 1000 classes. The number of images per
class in the training data ranges from 730 to 1300 images, while the validation
set contains 50 images per class. We use the standard data augmentation meth-
ods for training IMAGENET models available on the Pytorch repository 1. For
evaluation, each input image is first resized to 256 × 256, and then cropped to
a region of 224 × 224 at the center of the image. We initialise the determinis-
tic weights θ of an iBNN using the pretrained weights of ResNet-50 published
in the torchvision.models package, and train the variational parameters ϕ
for 15 epochs. For evaluation, we draw 32/K samples from each component
of iBNN-K for averaging. We report the classification error, NLL and ECE in

1https://github.com/pytorch/examples/blob/master/imagenet/
main.py

https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/pytorch/examples/blob/master/imagenet/main.py
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Table 5.1, showing that iBNNs improve performance of the pretrained ResNet-
50 across all metrics. This result is important as we can convert state-of-the-art
NNs, which have been growing quickly in size due to the abundance of train-
ing data and computational resources, to iBNNs with minimal overhead for
predictive uncertainty estimation.

5.4 Conclusion

In this chapter, we thoroughly evaluated generalisation performance and pre-
dictive uncertainty of iBNNs using architectures and datasets in image classi-
fication. We first compared iBNNs against other scalable BNN methods under
ideal test settings in Section 5.1. We then studied the behaviour of iBNNs on
OOD inputs, where we first visualised the progression of aleatoric and epis-
temic uncertainty as the test samples converge towards noise in Section 5.2.1.
Next, we evaluated iBNNs under covariate shift in Section 5.2.2, showing that
iBNNs can generalise well to perturbed inputs. Section 5.2.3 presented the com-
petitive results of iBNNs in the OOD detection task. Finally, in Section 5.3, we
empirically showed that iBNNs can reuse weights from pretrained determinis-
tic models to achieve good performance with reduced training time.



Chapter 6

Discussion

6.1 Advantages of iBNNs

In this section, we present the advantages of iBNNs. We attribute these advan-
tages to the combination of (i) node parameterisation, (ii) multi-modal latent
posterior, (iii) a suitable loss function with a relaxed KL constraint, and (iv) an
intuitive training algorithm.

Good generalisation performance The experimental results in Chapter 5
show that iBNNs perform well under various settings. This achievement is
due to iBNNs addressing three significant problems of training standard BNNs
using VI, which we have discussed in Section 2.4:

1. Difficulty in convergence caused by high variance in the gradient esti-
mates due to the high-dimensional Gaussian posterior.

2. Difficulty in prior specification.

3. Inability to use a complex posterior without incurring a high variational
parameter cost.

These problems are consequences of inferring the posterior of a large number of
random variables in the form of NNs’ weights. iBNNs address them using node
parameterisation. Specifically, they only infer the posterior of the layer-wise la-
tent input variables, which has a much smaller dimension than the full weight
posterior, thus mitigating the problematic behaviour of the high-dimensional
Gaussian posterior. This also simplifies prior specification, as an intuitive
prior for the multiplicative latent variables isN (1,diag s2), where a good value
of s can be found through cross-validation or maximising the marginal log-
likelihood. Furthermore, the low-dimensional latent variables permit the us-
age of a mixture posterior without adding a substantial number of variational
parameters, which significantly improves performance of iBNNs, as we have
observed in Chapter 5. The additional performance gain is attained through a
good KL constraint, an intuitive training algorithm and good hyperparameter
settings, as studied in Chapter 4.
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Robustness against OOD samples The authors of [88] showed that one can
improve robustness against OOD samples of an ensemble by promoting func-
tional diversity among its members. Likewise, an iBNN achieves its robustness
as we apply various measures to improve diversity among posterior compo-
nents. In particular, we use (i) a training algorithm that trains each component
on a different permutation of the training data, (ii) a relaxed KL term allowing
components to be far away from each other in the parameter space, and (iii) a
large variational learning rate preventing the components from collapsing to a
small region. Furthermore, as we jointly train the components, they learn to
produce complementary predictions to each other, thus improving the effec-
tiveness of the ensemble. We theorise that this is why iBNNs are better than
SWAG in OOD detection, even though both approaches approximate a local
mode in the loss landscape.

Low computational and memory cost Compared to methods performing
weight posterior inference, iBNNs have lower computational and memory
complexity. As a result, iBNNs are an attractive option for (i) applications on
edge devices with small computational and memory budgets such as mobile
phones, and (ii) current state-of-the-art deep NN architectures whose parame-
ter counts range from hundreds of millions to a few billions.

Ease of hyperparameter selection Finding good hyperparameters for iBNNs
is trivial, as we mostly need to focus on tuning the hyperparameters of the
variational parameters, while for deterministic parameters, we can reuse the
hyperparameters of a corresponding deterministic model. For the variational
parameters, we need to select the prior variance s2, the number of data replica-
tions S and the variational learning rate λ1. For s2, we can find a good value
through cross-validation or maximising the marginal log-likelihood. As we
have demonstrated in Chapter 4, a good value for S is 4 and we should set
λ1 to a large value.

Ability to reuse weights of pretrained NNs We have demonstrated in Sec-
tion 5.3 that an iBNN can reuse deterministic weights from a pretrained NN to
save training time and achieve better generalisation performance.

6.2 Disadvantages of iBNNs

Increased training time The training time of iBNNs is higher than SWAG and
MC-Dropout, which have the same training time as a similar deterministic NN,
since we need to replicate each minibatch S times during training of iBNNs
to maintain good predictive performance. While this is unfavourable for very
large NNs and datasets, we have shown in Section 5.3 that we can save training
time via initialising the deterministic weights of an iBNN using a pretrained
model.
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Single-mode approximation As an iBNN only approximates a local mode,
it is not as good as a DE, which captures multiple modes in the loss land-
scape. Nonetheless, iBNNs are still useful as they achieve good predictive per-
formance and robustness against OOD samples with lower computational and
memory cost.

6.3 The role of low-dimensional posteriors in BNNs

iBNNs follow a line of research finding compact posteriors for BNNs provid-
ing good predictive performance and uncertainty [49, 82, 89–91]. The good
results of iBNNs and other methods, such as Rank-1 BNNs [49] and Subspace
Inference [82], are evidence of the potential for low-dimensional posteriors in
BNNs. This is further supported by the study in [92], which showed that the
degrees of freedom needed by an NN to solve a particular learning problem
are much smaller than the number of weights in the model. Related to this ob-
servation is a method called Subspace Inference [82], which first constructs a
mapping from the parameter space to a lower-dimensional subspace and then
performs Bayesian inference in this subspace to train a BNN. For instance, this
method can train a BNN with the WRN-28x10 architecture [79] on CIFAR-100
by performing inference in a 5-dimensional subspace [82]. We also observed
this phenomenon in the PCA embeddings of iBNNs in Figure 4.6, showing that
the posterior of an iBNN effectively captures high-performing weights within a
local, Gaussian-like region in the subspace spanned by the first few PCA com-
ponents. While the PCA subspaces in Figure 4.6 indicate that the multiplicative
latent variables of iBNNs might not be sufficient to capture multiple modes
of the loss landscape, we theorise that there are other types of parameterisa-
tion that could achieve this goal when combined with an expressive posterior.
Therefore, we believe that reducing the dimension of the posterior through a
suitable method is a viable way to train a large BNN.

6.4 Future work

Experiments with other NN architectures This thesis focuses mainly on CNN
architectures. However, many other popular architectures exist, such as recur-
rent neural networks [93, 94] and Transformer [5]. It will be interesting to study
the behaviour of iBNNs with these architectures.

Experiments with different types of latent variables Here we introduce mul-
tiplicative latent variables, which can only capture a single mode in a loss land-
scape when paired with a mixture of Gaussians posterior. There are other ways
to introduce latent variables. For example, we could concatenate the latent vec-
tor to the input vector of each layer instead of using point-wise multiplication.
With the right type of latent variables and an expressive posterior, we can po-
tentially capture multiple modes in the loss landscape and reach performance
of DEs.
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Using more expressive posterior distributions Due to the low dimensional-
ity of the latent variables, we can employ more expressive posterior distribu-
tions, such as normalising flows [73–76], which can approximate the true pos-
terior of the latent variables more accurately. Thus, it potentially could capture
multiple modes in the loss landscape when paired with the right type of latent
variables.

Additional measures to improve ensemble diversity Ensemble diversity is
vital to predictive performance [67] and robustness against OOD samples [88].
Here we increase the diversity among members of an iBNN’s ensemble poste-
rior by training different components on different permutations of the training
set and employing a large variational learning rate to prevent them from con-
verging to similar functions. Other methods could also be employed, such as
applying data augmentations (either to the inputs, the target labels, or both) or
adding additional constraints to the loss function.



Chapter 7

Conclusions

This thesis introduced implicit Bayesian neural networks (iBNNs), BNN mod-
els that can be applied to deep architectures and large datasets without sub-
stantially increasing the computational and memory complexity. This model
achieves efficiency by performing posterior inference over the layer-wise latent
input variables and treating weights as deterministic variables that can either
be trained or initialised from pretrained models, thus simplifying the training
problem and mitigating the challenges of training a conventional BNN. We pro-
posed an ensemble variational posterior for the latent variables, as well as a
learning objective and a training procedure promoting diversity among ensem-
ble members. Using popular datasets and NN architectures for image classifi-
cation, we showed that iBNNs achieve competitive performance compared to
other scalable BNN methods while having much smaller numbers of parame-
ters. Furthermore, we showed that iBNNs produce reliable uncertainty and are
robust against OOD samples.

Even though we jointly optimised the deterministic weights and latent vari-
ables in the main experiments, we also showed that iBNNs can utilise pre-
trained weights and only need to learn the latent variables to induce uncer-
tainty and improve generalisation performance. This notion can help reduce
the training time significantly by splitting the procedure into two phases, where
we only optimise the deterministic weights in the first phase and then jointly
train both the weights and the variational parameters in the second phase. One
exciting application is that we can convert large pretrained NNs into iBNNs
with minimal training overhead for uncertainty estimation and better predic-
tive performance.

As state-of-the-art NNs become larger, we believe that inducing predic-
tive uncertainty through latent variables is a more viable research direction for
BNNs than the standard weight posterior approach. We have demonstrated
in this thesis that a suitable type of latent variables paired with an expressive
posterior can both improve predictive performance and provide reasonable un-
certainty while having low computational and memory cost. Therefore, an in-
teresting research direction is to discover other types of latent variables as well
as experiment with more expressive posteriors such as normalising flows [73–
76].
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Appendix A

Hyperparameters

A.1 CIFAR experiments

Each experiment is run for 300 epochs. We use SGD optimiser with Nesterov
momentum of 0.9 for all experiments. The initial learning rate λ0 for the de-
terministic parameters is set to 0.05 for VGG-16 and 0.10 for WRN-28x10. This
learning rate is linearly annealed to 0.01λ0 from epoch 150 to epoch 270. We
set the weight decay for the deterministic parameters to 5 × 10−4. All experi-
ments are run on one Tesla V100-PCIE-32GB. Bellow we present the additional
hyperparameters for iBNN and baseline methods:

Deterministic models and DEs We train the deterministic models using the
settings presented at above. For DEs, we simply combine predictions from de-
terministic models trained using different random seeds.

iBNN We use the same hyperparameters for the deterministic weights as pre-
sented above, however we use a weight decay of 3 × 10−4 for VGG-16. We do
not apply weight decay and learning rate annealing to the variational param-
eters. We set the prior to N (1.0, 0.32) for VGG-16, and N (1.0, 0.12) for WRN-
28x10. We initialise the means of the posterior components with N (1.0, 0.752)
for VGG-16, and N (1.0, 0.52) for WRN-28x10. We initialise the standard devia-
tions of these components using N (0.05, 0.022) for all experiments. We linearly
increase the KL weight from 0 to 1 for 200 epochs. Table A.1 presents all the
other hyperparameters along with training time for this methods.

SWAG We use the same settings and codes from authors of the SWAG paper
at https://github.com/wjmaddox/swa_gaussian/.

MC-Dropout We use a dropout rate of 0.05 before every fully-connected and
convolution layers for both VGG-16 and WRN-28x10.

Radial BNN We adapt the codes from https://github.com/SebFar/

radial_bnn and set the prior to N (0.0, 1.02).
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Table A.1: Hyperparameters of iBNN. K is the number of posterior compo-
nents. λ1 is the learning rate of the variational parameters. S is the number of
data replications.

VGG-16 WRN-28x10

CIFAR-10 CIFAR-100 Training
time

CIFAR-10 CIFAR-100 Training
time

K λ1 S λ1 S λ1 S λ1 S

1 0.8 4 0.8 4 ∼4h15m 0.8 2 0.8 2 ∼18h30m
2 1.6 4 1.6 4 ∼4h15m 1.6 2 1.6 2 ∼18h30m
4 3.2 4 3.2 4 ∼4h15m 1.6 2 3.2 2 ∼18h30m
8 6.4 4 6.4 4 ∼4h15m 3.2 2 9.6 2 ∼18h30m
16 6.4 4 6.4 4 ∼4h15m 6.4 2 9.6 2 ∼18h30m
32 6.4 4 6.4 4 ∼4h15m 6.4 4 19.2 4 ∼34h15m

A.2 IMAGENET experiments

We use the pretrained ResNet-50 weights from torchvision.models pack-
age. We set the learning rate λ0 to 5 × 10−4, weight decay of 1 × 10−4, learn-
ing rate λ1 to 0.80 and number of data replications S to 1 for all settings.
We use a batch size of 1280. We initialise the means of the posterior compo-
nents usingN (1.0, 0.52) and the standard deviations of these components using
N (0.05, 0.022). We set the prior to N (1.0, 0.12). We keep the KL weight fixed at
1.0. Each experiment is run for 15 epochs on four Tesla V100-PCIE-32GB.
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